Efficiently Controllable Graphs

Efficiently Controllable Graphs We investigate graphs that can be disconnected into small components by removing a vanishingly small fraction of their vertices. We show that, when a controllable quantum network is described by such a graph and the gaps in eigenfrequencies and in transition frequencies are bounded exponentially in the number of vertices, the network is efficiently controllable, in the sense that universal quantum computation can be performed using a control sequence polynomial in the size of the network while controlling a vanishingly small fraction of subsystems. We show that networks corresponding to finite-dimensional lattices are efficiently controllable and explore generalizations to percolation clusters and random graphs. We show that the classical computational complexity of estimating the ground state of Hamiltonians described by controllable graphs is polynomial in the number of subsystems or qubits. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review Letters American Physical Society (APS)

Efficiently Controllable Graphs

Preview Only

Efficiently Controllable Graphs

Abstract

We investigate graphs that can be disconnected into small components by removing a vanishingly small fraction of their vertices. We show that, when a controllable quantum network is described by such a graph and the gaps in eigenfrequencies and in transition frequencies are bounded exponentially in the number of vertices, the network is efficiently controllable, in the sense that universal quantum computation can be performed using a control sequence polynomial in the size of the network while controlling a vanishingly small fraction of subsystems. We show that networks corresponding to finite-dimensional lattices are efficiently controllable and explore generalizations to percolation clusters and random graphs. We show that the classical computational complexity of estimating the ground state of Hamiltonians described by controllable graphs is polynomial in the number of subsystems or qubits.
Loading next page...
 
/lp/aps_physical/efficiently-controllable-graphs-ht3ZZsI1xz
Publisher
The American Physical Society
Copyright
Copyright © © 2017 American Physical Society
ISSN
0031-9007
eISSN
1079-7114
D.O.I.
10.1103/PhysRevLett.118.260501
Publisher site
See Article on Publisher Site

Abstract

We investigate graphs that can be disconnected into small components by removing a vanishingly small fraction of their vertices. We show that, when a controllable quantum network is described by such a graph and the gaps in eigenfrequencies and in transition frequencies are bounded exponentially in the number of vertices, the network is efficiently controllable, in the sense that universal quantum computation can be performed using a control sequence polynomial in the size of the network while controlling a vanishingly small fraction of subsystems. We show that networks corresponding to finite-dimensional lattices are efficiently controllable and explore generalizations to percolation clusters and random graphs. We show that the classical computational complexity of estimating the ground state of Hamiltonians described by controllable graphs is polynomial in the number of subsystems or qubits.

Journal

Physical Review LettersAmerican Physical Society (APS)

Published: Jun 30, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial