Efficiently Controllable Graphs

Efficiently Controllable Graphs We investigate graphs that can be disconnected into small components by removing a vanishingly small fraction of their vertices. We show that, when a controllable quantum network is described by such a graph and the gaps in eigenfrequencies and in transition frequencies are bounded exponentially in the number of vertices, the network is efficiently controllable, in the sense that universal quantum computation can be performed using a control sequence polynomial in the size of the network while controlling a vanishingly small fraction of subsystems. We show that networks corresponding to finite-dimensional lattices are efficiently controllable and explore generalizations to percolation clusters and random graphs. We show that the classical computational complexity of estimating the ground state of Hamiltonians described by controllable graphs is polynomial in the number of subsystems or qubits. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review Letters American Physical Society (APS)

Efficiently Controllable Graphs

Preview Only

Efficiently Controllable Graphs

Abstract

We investigate graphs that can be disconnected into small components by removing a vanishingly small fraction of their vertices. We show that, when a controllable quantum network is described by such a graph and the gaps in eigenfrequencies and in transition frequencies are bounded exponentially in the number of vertices, the network is efficiently controllable, in the sense that universal quantum computation can be performed using a control sequence polynomial in the size of the network while controlling a vanishingly small fraction of subsystems. We show that networks corresponding to finite-dimensional lattices are efficiently controllable and explore generalizations to percolation clusters and random graphs. We show that the classical computational complexity of estimating the ground state of Hamiltonians described by controllable graphs is polynomial in the number of subsystems or qubits.
Loading next page...
 
/lp/aps_physical/efficiently-controllable-graphs-ht3ZZsI1xz
Publisher
The American Physical Society
Copyright
Copyright © © 2017 American Physical Society
ISSN
0031-9007
eISSN
1079-7114
D.O.I.
10.1103/PhysRevLett.118.260501
Publisher site
See Article on Publisher Site

Abstract

We investigate graphs that can be disconnected into small components by removing a vanishingly small fraction of their vertices. We show that, when a controllable quantum network is described by such a graph and the gaps in eigenfrequencies and in transition frequencies are bounded exponentially in the number of vertices, the network is efficiently controllable, in the sense that universal quantum computation can be performed using a control sequence polynomial in the size of the network while controlling a vanishingly small fraction of subsystems. We show that networks corresponding to finite-dimensional lattices are efficiently controllable and explore generalizations to percolation clusters and random graphs. We show that the classical computational complexity of estimating the ground state of Hamiltonians described by controllable graphs is polynomial in the number of subsystems or qubits.

Journal

Physical Review LettersAmerican Physical Society (APS)

Published: Jun 30, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off