Effects of nonlinear gradient terms on the defect turbulence regime in weakly dissipative systems

Effects of nonlinear gradient terms on the defect turbulence regime in weakly dissipative systems We investigate the behavior of traveling waves in a defect turbulence regime with the periodic boundary conditions by using the lowest-order complex Ginzburg-Landau equation (CGLE), and we show the effect of the nonlinear gradient terms in the system. It is found that the nonlinear gradient terms which appear at the same order as the quintic term can change the behavior of the wave patterns. The presence of the nonlinear gradient terms can cause major changes in the behavior of the solution. They can be considered like the stabilizing terms. The system which was initially unstable or chaotic can become stable by including the nonlinear gradient terms. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review E American Physical Society (APS)

Effects of nonlinear gradient terms on the defect turbulence regime in weakly dissipative systems

Preview Only

Effects of nonlinear gradient terms on the defect turbulence regime in weakly dissipative systems

Abstract

We investigate the behavior of traveling waves in a defect turbulence regime with the periodic boundary conditions by using the lowest-order complex Ginzburg-Landau equation (CGLE), and we show the effect of the nonlinear gradient terms in the system. It is found that the nonlinear gradient terms which appear at the same order as the quintic term can change the behavior of the wave patterns. The presence of the nonlinear gradient terms can cause major changes in the behavior of the solution. They can be considered like the stabilizing terms. The system which was initially unstable or chaotic can become stable by including the nonlinear gradient terms.
Loading next page...
 
/lp/aps_physical/effects-of-nonlinear-gradient-terms-on-the-defect-turbulence-regime-in-fcQMhsL0Le
Publisher
American Physical Society (APS)
Copyright
Copyright © ©2017 American Physical Society
ISSN
1539-3755
eISSN
550-2376
D.O.I.
10.1103/PhysRevE.96.022205
Publisher site
See Article on Publisher Site

Abstract

We investigate the behavior of traveling waves in a defect turbulence regime with the periodic boundary conditions by using the lowest-order complex Ginzburg-Landau equation (CGLE), and we show the effect of the nonlinear gradient terms in the system. It is found that the nonlinear gradient terms which appear at the same order as the quintic term can change the behavior of the wave patterns. The presence of the nonlinear gradient terms can cause major changes in the behavior of the solution. They can be considered like the stabilizing terms. The system which was initially unstable or chaotic can become stable by including the nonlinear gradient terms.

Journal

Physical Review EAmerican Physical Society (APS)

Published: Aug 9, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off