Effect of SU(2) symmetry on many-body localization and thermalization

Effect of SU(2) symmetry on many-body localization and thermalization The many-body localized (MBL) phase is characterized by a complete set of quasilocal integrals of motion and area-law entanglement of excited eigenstates. We study the effect of non-Abelian continuous symmetries on MBL, considering the case of SU(2) symmetric disordered spin chains. The SU(2) symmetry imposes strong constraints on the entanglement structure of the eigenstates, precluding conventional MBL. We construct a fixed-point Hamiltonian, which realizes a nonergodic (but non-MBL) phase characterized by eigenstates having logarithmic scaling of entanglement with the system size, as well as an incomplete set of quasilocal integrals of motion. We study the response of such a phase to local symmetric perturbations, finding that even weak perturbations induce multispin resonances. We conclude that the nonergodic phase is generally unstable and that SU(2) symmetry implies thermalization. The approach introduced in this Rapid Communication can be used to study dynamics in disordered systems with non-Abelian symmetries, and provides a starting point for searching nonergodic phases beyond conventional MBL. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Effect of SU(2) symmetry on many-body localization and thermalization

Preview Only

Effect of SU(2) symmetry on many-body localization and thermalization

Abstract

The many-body localized (MBL) phase is characterized by a complete set of quasilocal integrals of motion and area-law entanglement of excited eigenstates. We study the effect of non-Abelian continuous symmetries on MBL, considering the case of SU(2) symmetric disordered spin chains. The SU(2) symmetry imposes strong constraints on the entanglement structure of the eigenstates, precluding conventional MBL. We construct a fixed-point Hamiltonian, which realizes a nonergodic (but non-MBL) phase characterized by eigenstates having logarithmic scaling of entanglement with the system size, as well as an incomplete set of quasilocal integrals of motion. We study the response of such a phase to local symmetric perturbations, finding that even weak perturbations induce multispin resonances. We conclude that the nonergodic phase is generally unstable and that SU(2) symmetry implies thermalization. The approach introduced in this Rapid Communication can be used to study dynamics in disordered systems with non-Abelian symmetries, and provides a starting point for searching nonergodic phases beyond conventional MBL.
Loading next page...
 
/lp/aps_physical/effect-of-su-2-symmetry-on-many-body-localization-and-thermalization-dIM6L5zl3J
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.96.041122
Publisher site
See Article on Publisher Site

Abstract

The many-body localized (MBL) phase is characterized by a complete set of quasilocal integrals of motion and area-law entanglement of excited eigenstates. We study the effect of non-Abelian continuous symmetries on MBL, considering the case of SU(2) symmetric disordered spin chains. The SU(2) symmetry imposes strong constraints on the entanglement structure of the eigenstates, precluding conventional MBL. We construct a fixed-point Hamiltonian, which realizes a nonergodic (but non-MBL) phase characterized by eigenstates having logarithmic scaling of entanglement with the system size, as well as an incomplete set of quasilocal integrals of motion. We study the response of such a phase to local symmetric perturbations, finding that even weak perturbations induce multispin resonances. We conclude that the nonergodic phase is generally unstable and that SU(2) symmetry implies thermalization. The approach introduced in this Rapid Communication can be used to study dynamics in disordered systems with non-Abelian symmetries, and provides a starting point for searching nonergodic phases beyond conventional MBL.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Jul 21, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial