Effect of Pt substitution on the magnetocrystalline anisotropy of Ni2MnGa: A competition between chemistry and elasticity

Effect of Pt substitution on the magnetocrystalline anisotropy of Ni2MnGa: A competition between... The magnetocrystalline anisotropy (MAE) of Ni2−xPtxMnGa(0≤x≤0.25) alloys are investigated using the singular point detection technique and density functional theory. A slight reduction in MAE as compared to that of Ni2MnGa is observed due to Pt substitution. The calculated MAE varies almost linearly with the orbital moment anisotropy. A competition between the elastic and the chemical contributions explains the observed trend of the MAE with increasing Pt content. The large MAE in combination with the previously reported increase of the martensitic transition temperature makes these alloys promising candidates for ferromagnetic shape memory applications near room temperature. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Effect of Pt substitution on the magnetocrystalline anisotropy of Ni2MnGa: A competition between chemistry and elasticity

Preview Only

Effect of Pt substitution on the magnetocrystalline anisotropy of Ni2MnGa: A competition between chemistry and elasticity

Abstract

The magnetocrystalline anisotropy (MAE) of Ni2−xPtxMnGa(0≤x≤0.25) alloys are investigated using the singular point detection technique and density functional theory. A slight reduction in MAE as compared to that of Ni2MnGa is observed due to Pt substitution. The calculated MAE varies almost linearly with the orbital moment anisotropy. A competition between the elastic and the chemical contributions explains the observed trend of the MAE with increasing Pt content. The large MAE in combination with the previously reported increase of the martensitic transition temperature makes these alloys promising candidates for ferromagnetic shape memory applications near room temperature.
Loading next page...
 
/lp/aps_physical/effect-of-pt-substitution-on-the-magnetocrystalline-anisotropy-of-Y8wyU5sWur
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.96.054105
Publisher site
See Article on Publisher Site

Abstract

The magnetocrystalline anisotropy (MAE) of Ni2−xPtxMnGa(0≤x≤0.25) alloys are investigated using the singular point detection technique and density functional theory. A slight reduction in MAE as compared to that of Ni2MnGa is observed due to Pt substitution. The calculated MAE varies almost linearly with the orbital moment anisotropy. A competition between the elastic and the chemical contributions explains the observed trend of the MAE with increasing Pt content. The large MAE in combination with the previously reported increase of the martensitic transition temperature makes these alloys promising candidates for ferromagnetic shape memory applications near room temperature.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Aug 7, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off