Effect of disorder on superconductivity and Rashba spin-orbit coupling in LaAlO3 /SrTiO3 interfaces

Effect of disorder on superconductivity and Rashba spin-orbit coupling in LaAlO3 /SrTiO3 interfaces A rather unique feature of the two-dimensional electron gas formed at the interface between the two insulators LaAlO3 and SrTiO3 is to host both gate-tunable superconductivity and strong spin-orbit coupling. In the present work, we use the disorder generated by Cr substitution of Al atoms in LaAlO3 as a tool to explore the nature of superconductivity and spin-orbit coupling in these interfaces. We analyze the transport properties of three different samples whose only relevant difference is their elastic scattering time τe. A reduction of the superconducting Tc is observed with Cr doping consistent with an increase of electron-electron interaction in the presence of disorder. In addition, the evolution of spin-orbit coupling with gate voltage and Cr doping evidences a Dyakonov-Perel mechanism of spin relaxation (τSO∝τe−1) in the presence of a Rashba-type spin-orbit interaction. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Effect of disorder on superconductivity and Rashba spin-orbit coupling in LaAlO3 /SrTiO3 interfaces

Preview Only

Effect of disorder on superconductivity and Rashba spin-orbit coupling in LaAlO3 /SrTiO3 interfaces

Abstract

A rather unique feature of the two-dimensional electron gas formed at the interface between the two insulators LaAlO3 and SrTiO3 is to host both gate-tunable superconductivity and strong spin-orbit coupling. In the present work, we use the disorder generated by Cr substitution of Al atoms in LaAlO3 as a tool to explore the nature of superconductivity and spin-orbit coupling in these interfaces. We analyze the transport properties of three different samples whose only relevant difference is their elastic scattering time τe. A reduction of the superconducting Tc is observed with Cr doping consistent with an increase of electron-electron interaction in the presence of disorder. In addition, the evolution of spin-orbit coupling with gate voltage and Cr doping evidences a Dyakonov-Perel mechanism of spin relaxation (τSO∝τe−1) in the presence of a Rashba-type spin-orbit interaction.
Loading next page...
 
/lp/aps_physical/effect-of-disorder-on-superconductivity-and-rashba-spin-orbit-coupling-UTMxDb0HY8
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.96.024509
Publisher site
See Article on Publisher Site

Abstract

A rather unique feature of the two-dimensional electron gas formed at the interface between the two insulators LaAlO3 and SrTiO3 is to host both gate-tunable superconductivity and strong spin-orbit coupling. In the present work, we use the disorder generated by Cr substitution of Al atoms in LaAlO3 as a tool to explore the nature of superconductivity and spin-orbit coupling in these interfaces. We analyze the transport properties of three different samples whose only relevant difference is their elastic scattering time τe. A reduction of the superconducting Tc is observed with Cr doping consistent with an increase of electron-electron interaction in the presence of disorder. In addition, the evolution of spin-orbit coupling with gate voltage and Cr doping evidences a Dyakonov-Perel mechanism of spin relaxation (τSO∝τe−1) in the presence of a Rashba-type spin-orbit interaction.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Jul 18, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off