Dynamics of spinning particle pairs in a single-layer complex plasma crystal

Dynamics of spinning particle pairs in a single-layer complex plasma crystal Spontaneous formation of spinning pairs of particles, or torsions, is studied in a single-layer complex plasma crystal by reducing the discharge power at constant neutral gas pressure. At higher gas pressures, torsions spontaneously form below a certain power threshold. Further reduction of the discharge power leads to the formation of multiple torsions. However, at lower gas pressures the torsion formation is preceded by mode-coupling instability (MCI). The crystal dynamics are studied with the help of the fluctuation spectra of crystal particles' in-plane velocities. Surprisingly, the spectra of the crystal with torsions and MCI are rather similar and contain hot spots at similar locations on the (k,ω) plane, despite very different appearances of the respective particle trajectories. The torsion rotation speed is close (slightly below) to the maximum frequency of the in-plane compressional mode. When multiple torsions form, their rotation speeds are distributed in a narrow range slightly below the maximum frequency. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review E American Physical Society (APS)

Dynamics of spinning particle pairs in a single-layer complex plasma crystal

Preview Only

Dynamics of spinning particle pairs in a single-layer complex plasma crystal

Abstract

Spontaneous formation of spinning pairs of particles, or torsions, is studied in a single-layer complex plasma crystal by reducing the discharge power at constant neutral gas pressure. At higher gas pressures, torsions spontaneously form below a certain power threshold. Further reduction of the discharge power leads to the formation of multiple torsions. However, at lower gas pressures the torsion formation is preceded by mode-coupling instability (MCI). The crystal dynamics are studied with the help of the fluctuation spectra of crystal particles' in-plane velocities. Surprisingly, the spectra of the crystal with torsions and MCI are rather similar and contain hot spots at similar locations on the (k,ω) plane, despite very different appearances of the respective particle trajectories. The torsion rotation speed is close (slightly below) to the maximum frequency of the in-plane compressional mode. When multiple torsions form, their rotation speeds are distributed in a narrow range slightly below the maximum frequency.
Loading next page...
 
/lp/aps_physical/dynamics-of-spinning-particle-pairs-in-a-single-layer-complex-plasma-JRV2wVQWdn
Publisher
American Physical Society (APS)
Copyright
Copyright © ©2017 American Physical Society
ISSN
1539-3755
eISSN
550-2376
D.O.I.
10.1103/PhysRevE.96.011201
Publisher site
See Article on Publisher Site

Abstract

Spontaneous formation of spinning pairs of particles, or torsions, is studied in a single-layer complex plasma crystal by reducing the discharge power at constant neutral gas pressure. At higher gas pressures, torsions spontaneously form below a certain power threshold. Further reduction of the discharge power leads to the formation of multiple torsions. However, at lower gas pressures the torsion formation is preceded by mode-coupling instability (MCI). The crystal dynamics are studied with the help of the fluctuation spectra of crystal particles' in-plane velocities. Surprisingly, the spectra of the crystal with torsions and MCI are rather similar and contain hot spots at similar locations on the (k,ω) plane, despite very different appearances of the respective particle trajectories. The torsion rotation speed is close (slightly below) to the maximum frequency of the in-plane compressional mode. When multiple torsions form, their rotation speeds are distributed in a narrow range slightly below the maximum frequency.

Journal

Physical Review EAmerican Physical Society (APS)

Published: Jul 12, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off