Dynamics of electroweak phase transition in singlet-scalar extension of the standard model

Dynamics of electroweak phase transition in singlet-scalar extension of the standard model An addition to the Standard Model of a real, gauge-singlet scalar field, coupled via a Higgs portal interaction, can reopen the possibility of a strongly first-order electroweak phase transition (EWPT) and successful electroweak baryogenesis (EWBG). If a discrete symmetry that forbids doublet-singlet mixing is present, this model is notoriously difficult to test at the Large Hadron Collider. As a result, it emerged as a useful benchmark for evaluating the capabilities of proposed future colliders to conclusively test EWPT and EWBG. In this paper, we evaluate the bubble nucleation temperature throughout the parameter space of this model where a first-order transition is expected. We find that in large parts of this parameter space, bubbles in fact do not nucleate at any finite temperature, eliminating these models as viable EWBG scenarios. This constraint eliminates most of the region where a “two-step” phase transition is naively predicted, while the “one-step” transition region is largely unaffected. In addition, expanding bubble walls must not reach relativistic speeds during the transition for baryon asymmetry to be generated. We show that this condition further reduces the parameter space with viable EWBG. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review D American Physical Society (APS)

Dynamics of electroweak phase transition in singlet-scalar extension of the standard model

Preview Only

Dynamics of electroweak phase transition in singlet-scalar extension of the standard model

Abstract

An addition to the Standard Model of a real, gauge-singlet scalar field, coupled via a Higgs portal interaction, can reopen the possibility of a strongly first-order electroweak phase transition (EWPT) and successful electroweak baryogenesis (EWBG). If a discrete symmetry that forbids doublet-singlet mixing is present, this model is notoriously difficult to test at the Large Hadron Collider. As a result, it emerged as a useful benchmark for evaluating the capabilities of proposed future colliders to conclusively test EWPT and EWBG. In this paper, we evaluate the bubble nucleation temperature throughout the parameter space of this model where a first-order transition is expected. We find that in large parts of this parameter space, bubbles in fact do not nucleate at any finite temperature, eliminating these models as viable EWBG scenarios. This constraint eliminates most of the region where a “two-step” phase transition is naively predicted, while the “one-step” transition region is largely unaffected. In addition, expanding bubble walls must not reach relativistic speeds during the transition for baryon asymmetry to be generated. We show that this condition further reduces the parameter space with viable EWBG.
Loading next page...
 
/lp/aps_physical/dynamics-of-electroweak-phase-transition-in-singlet-scalar-extension-190V94BPu9
Publisher
The American Physical Society
Copyright
Copyright © © 2017 American Physical Society
ISSN
1550-7998
eISSN
1550-2368
D.O.I.
10.1103/PhysRevD.96.015036
Publisher site
See Article on Publisher Site

Abstract

An addition to the Standard Model of a real, gauge-singlet scalar field, coupled via a Higgs portal interaction, can reopen the possibility of a strongly first-order electroweak phase transition (EWPT) and successful electroweak baryogenesis (EWBG). If a discrete symmetry that forbids doublet-singlet mixing is present, this model is notoriously difficult to test at the Large Hadron Collider. As a result, it emerged as a useful benchmark for evaluating the capabilities of proposed future colliders to conclusively test EWPT and EWBG. In this paper, we evaluate the bubble nucleation temperature throughout the parameter space of this model where a first-order transition is expected. We find that in large parts of this parameter space, bubbles in fact do not nucleate at any finite temperature, eliminating these models as viable EWBG scenarios. This constraint eliminates most of the region where a “two-step” phase transition is naively predicted, while the “one-step” transition region is largely unaffected. In addition, expanding bubble walls must not reach relativistic speeds during the transition for baryon asymmetry to be generated. We show that this condition further reduces the parameter space with viable EWBG.

Journal

Physical Review DAmerican Physical Society (APS)

Published: Jul 1, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial