Dynamics of bad-cavity-enhanced interaction with cold Sr atoms for laser stabilization

Dynamics of bad-cavity-enhanced interaction with cold Sr atoms for laser stabilization Hybrid systems of cold atoms and optical cavities are promising systems for increasing the stability of laser oscillators used in quantum metrology and atomic clocks. In this paper we map out the atom-cavity dynamics in such a system and demonstrate limitations as well as robustness of the approach. We investigate the phase response of an ensemble of cold Sr88 atoms inside an optical cavity for use as an error signal in laser frequency stabilization. With this system we realize a regime where the high atomic phase shift limits the dynamical locking range. The limitation is caused by the cavity transfer function relating input field to output field. The cavity dynamics is shown to have only little influence on the prospects for laser stabilization, making the system robust towards cavity fluctuations and ideal for the improvement of future narrow linewidth lasers. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review A American Physical Society (APS)

Dynamics of bad-cavity-enhanced interaction with cold Sr atoms for laser stabilization

Preview Only

Dynamics of bad-cavity-enhanced interaction with cold Sr atoms for laser stabilization

Abstract

Hybrid systems of cold atoms and optical cavities are promising systems for increasing the stability of laser oscillators used in quantum metrology and atomic clocks. In this paper we map out the atom-cavity dynamics in such a system and demonstrate limitations as well as robustness of the approach. We investigate the phase response of an ensemble of cold Sr88 atoms inside an optical cavity for use as an error signal in laser frequency stabilization. With this system we realize a regime where the high atomic phase shift limits the dynamical locking range. The limitation is caused by the cavity transfer function relating input field to output field. The cavity dynamics is shown to have only little influence on the prospects for laser stabilization, making the system robust towards cavity fluctuations and ideal for the improvement of future narrow linewidth lasers.
Loading next page...
 
/lp/aps_physical/dynamics-of-bad-cavity-enhanced-interaction-with-cold-sr-atoms-for-AUuq2J25Vs
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1050-2947
eISSN
1094-1622
D.O.I.
10.1103/PhysRevA.96.013847
Publisher site
See Article on Publisher Site

Abstract

Hybrid systems of cold atoms and optical cavities are promising systems for increasing the stability of laser oscillators used in quantum metrology and atomic clocks. In this paper we map out the atom-cavity dynamics in such a system and demonstrate limitations as well as robustness of the approach. We investigate the phase response of an ensemble of cold Sr88 atoms inside an optical cavity for use as an error signal in laser frequency stabilization. With this system we realize a regime where the high atomic phase shift limits the dynamical locking range. The limitation is caused by the cavity transfer function relating input field to output field. The cavity dynamics is shown to have only little influence on the prospects for laser stabilization, making the system robust towards cavity fluctuations and ideal for the improvement of future narrow linewidth lasers.

Journal

Physical Review AAmerican Physical Society (APS)

Published: Jul 24, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off