Dynamical typicality of embedded quantum systems

Dynamical typicality of embedded quantum systems We consider the dynamics of an arbitrary quantum system coupled to a large arbitrary and fully quantum-mechanical environment through a random interaction. We establish analytically and check numerically the typicality of this dynamics, in other words, the fact that the reduced density matrix of the system has a self-averaging property. This phenomenon, which lies in a generalized central limit theorem, justifies rigorously averaging procedures over certain classes of random interactions and can explain the absence of sensitivity to microscopic details of irreversible processes, such as thermalization. It provides more generally an ergodic principle for embedded quantum systems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review A American Physical Society (APS)

Dynamical typicality of embedded quantum systems

Preview Only

Dynamical typicality of embedded quantum systems

Abstract

We consider the dynamics of an arbitrary quantum system coupled to a large arbitrary and fully quantum-mechanical environment through a random interaction. We establish analytically and check numerically the typicality of this dynamics, in other words, the fact that the reduced density matrix of the system has a self-averaging property. This phenomenon, which lies in a generalized central limit theorem, justifies rigorously averaging procedures over certain classes of random interactions and can explain the absence of sensitivity to microscopic details of irreversible processes, such as thermalization. It provides more generally an ergodic principle for embedded quantum systems.
Loading next page...
 
/lp/aps_physical/dynamical-typicality-of-embedded-quantum-systems-FiM30iwLIg
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1050-2947
eISSN
1094-1622
D.O.I.
10.1103/PhysRevA.96.012108
Publisher site
See Article on Publisher Site

Abstract

We consider the dynamics of an arbitrary quantum system coupled to a large arbitrary and fully quantum-mechanical environment through a random interaction. We establish analytically and check numerically the typicality of this dynamics, in other words, the fact that the reduced density matrix of the system has a self-averaging property. This phenomenon, which lies in a generalized central limit theorem, justifies rigorously averaging procedures over certain classes of random interactions and can explain the absence of sensitivity to microscopic details of irreversible processes, such as thermalization. It provides more generally an ergodic principle for embedded quantum systems.

Journal

Physical Review AAmerican Physical Society (APS)

Published: Jul 10, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off