Dynamical Transition of Collective Motions in Dry Proteins

Dynamical Transition of Collective Motions in Dry Proteins Water is widely assumed to be essential for protein dynamics and function. In particular, the well-documented “dynamical” transition at ∼200  K, at which the protein changes from a rigid, nonfunctional form to a flexible, functional state, as detected in hydrogenated protein by incoherent neutron scattering, requires hydration. Here, we report on coherent neutron scattering experiments on perdeuterated proteins and reveal that a transition occurs in dry proteins at the same temperature resulting primarily from the collective heavy-atom motions. The dynamical transition discovered is intrinsic to the energy landscape of dry proteins. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review Letters American Physical Society (APS)
Preview Only

Dynamical Transition of Collective Motions in Dry Proteins

Abstract

Water is widely assumed to be essential for protein dynamics and function. In particular, the well-documented “dynamical” transition at ∼200  K, at which the protein changes from a rigid, nonfunctional form to a flexible, functional state, as detected in hydrogenated protein by incoherent neutron scattering, requires hydration. Here, we report on coherent neutron scattering experiments on perdeuterated proteins and reveal that a transition occurs in dry proteins at the same temperature resulting primarily from the collective heavy-atom motions. The dynamical transition discovered is intrinsic to the energy landscape of dry proteins.
Loading next page...
 
/lp/aps_physical/dynamical-transition-of-collective-motions-in-dry-proteins-ap0N6N2ztz
Publisher
American Physical Society (APS)
Copyright
Copyright © © 2017 American Physical Society
ISSN
0031-9007
eISSN
1079-7114
D.O.I.
10.1103/PhysRevLett.119.048101
Publisher site
See Article on Publisher Site

Abstract

Water is widely assumed to be essential for protein dynamics and function. In particular, the well-documented “dynamical” transition at ∼200  K, at which the protein changes from a rigid, nonfunctional form to a flexible, functional state, as detected in hydrogenated protein by incoherent neutron scattering, requires hydration. Here, we report on coherent neutron scattering experiments on perdeuterated proteins and reveal that a transition occurs in dry proteins at the same temperature resulting primarily from the collective heavy-atom motions. The dynamical transition discovered is intrinsic to the energy landscape of dry proteins.

Journal

Physical Review LettersAmerican Physical Society (APS)

Published: Jul 28, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off