Dynamical Transition of Collective Motions in Dry Proteins

Dynamical Transition of Collective Motions in Dry Proteins Water is widely assumed to be essential for protein dynamics and function. In particular, the well-documented “dynamical” transition at ∼200  K, at which the protein changes from a rigid, nonfunctional form to a flexible, functional state, as detected in hydrogenated protein by incoherent neutron scattering, requires hydration. Here, we report on coherent neutron scattering experiments on perdeuterated proteins and reveal that a transition occurs in dry proteins at the same temperature resulting primarily from the collective heavy-atom motions. The dynamical transition discovered is intrinsic to the energy landscape of dry proteins. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review Letters American Physical Society (APS)
Preview Only

Dynamical Transition of Collective Motions in Dry Proteins

Abstract

Water is widely assumed to be essential for protein dynamics and function. In particular, the well-documented “dynamical” transition at ∼200  K, at which the protein changes from a rigid, nonfunctional form to a flexible, functional state, as detected in hydrogenated protein by incoherent neutron scattering, requires hydration. Here, we report on coherent neutron scattering experiments on perdeuterated proteins and reveal that a transition occurs in dry proteins at the same temperature resulting primarily from the collective heavy-atom motions. The dynamical transition discovered is intrinsic to the energy landscape of dry proteins.
Loading next page...
 
/lp/aps_physical/dynamical-transition-of-collective-motions-in-dry-proteins-ap0N6N2ztz
Publisher
The American Physical Society
Copyright
Copyright © © 2017 American Physical Society
ISSN
0031-9007
eISSN
1079-7114
D.O.I.
10.1103/PhysRevLett.119.048101
Publisher site
See Article on Publisher Site

Abstract

Water is widely assumed to be essential for protein dynamics and function. In particular, the well-documented “dynamical” transition at ∼200  K, at which the protein changes from a rigid, nonfunctional form to a flexible, functional state, as detected in hydrogenated protein by incoherent neutron scattering, requires hydration. Here, we report on coherent neutron scattering experiments on perdeuterated proteins and reveal that a transition occurs in dry proteins at the same temperature resulting primarily from the collective heavy-atom motions. The dynamical transition discovered is intrinsic to the energy landscape of dry proteins.

Journal

Physical Review LettersAmerican Physical Society (APS)

Published: Jul 28, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial