Dynamical crossover in a stochastic model of cell fate decision

Dynamical crossover in a stochastic model of cell fate decision We study the asymptotic behaviors of stochastic cell fate decision between proliferation and differentiation. We propose a model of a self-replicating Langevin system, where cells choose their fate (i.e., proliferation or differentiation) depending on local cell density. Based on this model, we propose a scenario for multicellular organisms to maintain the density of cells (i.e., homeostasis) through finite-ranged cell-cell interactions. Furthermore, we numerically show that the distribution of the number of descendant cells changes over time, thus unifying the previously proposed two models regarding homeostasis: the critical birth death process and the voter model. Our results provide a general platform for the study of stochastic cell fate decision in terms of nonequilibrium statistical mechanics. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review E American Physical Society (APS)

Dynamical crossover in a stochastic model of cell fate decision

Preview Only

Dynamical crossover in a stochastic model of cell fate decision

Abstract

We study the asymptotic behaviors of stochastic cell fate decision between proliferation and differentiation. We propose a model of a self-replicating Langevin system, where cells choose their fate (i.e., proliferation or differentiation) depending on local cell density. Based on this model, we propose a scenario for multicellular organisms to maintain the density of cells (i.e., homeostasis) through finite-ranged cell-cell interactions. Furthermore, we numerically show that the distribution of the number of descendant cells changes over time, thus unifying the previously proposed two models regarding homeostasis: the critical birth death process and the voter model. Our results provide a general platform for the study of stochastic cell fate decision in terms of nonequilibrium statistical mechanics.
Loading next page...
 
/lp/aps_physical/dynamical-crossover-in-a-stochastic-model-of-cell-fate-decision-UDqPSrtCF0
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1539-3755
eISSN
550-2376
D.O.I.
10.1103/PhysRevE.96.012401
Publisher site
See Article on Publisher Site

Abstract

We study the asymptotic behaviors of stochastic cell fate decision between proliferation and differentiation. We propose a model of a self-replicating Langevin system, where cells choose their fate (i.e., proliferation or differentiation) depending on local cell density. Based on this model, we propose a scenario for multicellular organisms to maintain the density of cells (i.e., homeostasis) through finite-ranged cell-cell interactions. Furthermore, we numerically show that the distribution of the number of descendant cells changes over time, thus unifying the previously proposed two models regarding homeostasis: the critical birth death process and the voter model. Our results provide a general platform for the study of stochastic cell fate decision in terms of nonequilibrium statistical mechanics.

Journal

Physical Review EAmerican Physical Society (APS)

Published: Jul 5, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off