Dumbbell formation for elastic capsules in nonlinear extensional Stokes flows

Dumbbell formation for elastic capsules in nonlinear extensional Stokes flows Cross-slot and four-roll-mill microdevices are commonly used for particle manipulation and characterization owing to the stagnation-point flow at the device center. Because of the solid boundaries, these devices may generate extensional Stokes flows where the velocity is a nonlinear function of position associated with a decreased pressure at the particle edges and an increased pressure at the particle middle. Our computational investigation shows that in this class of Stokes flows, an elastic capsule made of a strain-hardening membrane develops two distinct steady-state conformations at strong flows, i.e., an elongated weak dumbbell shape with rounded edges at low flow nonlinearity and a laterally extended dumbbell shape at high flow nonlinearity. These effects are more pronounced for the less strain-hardening capsules which develop a flat extended middle where the two sides of the membrane approach each other. The strong stability properties of the strain-hardening capsules (owing to the development of strong membrane tensions) contrast significantly with the behavior of droplets in these nonlinear flows which are unable to achieve highly deformed steady-state dumbbell shapes owing to their constant surface tension. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review Fluids American Physical Society (APS)

Dumbbell formation for elastic capsules in nonlinear extensional Stokes flows

Preview Only

Dumbbell formation for elastic capsules in nonlinear extensional Stokes flows

Abstract

Cross-slot and four-roll-mill microdevices are commonly used for particle manipulation and characterization owing to the stagnation-point flow at the device center. Because of the solid boundaries, these devices may generate extensional Stokes flows where the velocity is a nonlinear function of position associated with a decreased pressure at the particle edges and an increased pressure at the particle middle. Our computational investigation shows that in this class of Stokes flows, an elastic capsule made of a strain-hardening membrane develops two distinct steady-state conformations at strong flows, i.e., an elongated weak dumbbell shape with rounded edges at low flow nonlinearity and a laterally extended dumbbell shape at high flow nonlinearity. These effects are more pronounced for the less strain-hardening capsules which develop a flat extended middle where the two sides of the membrane approach each other. The strong stability properties of the strain-hardening capsules (owing to the development of strong membrane tensions) contrast significantly with the behavior of droplets in these nonlinear flows which are unable to achieve highly deformed steady-state dumbbell shapes owing to their constant surface tension.
Loading next page...
 
/lp/aps_physical/dumbbell-formation-for-elastic-capsules-in-nonlinear-extensional-qdq4kIL20y
Publisher
American Physical Society (APS)
Copyright
Copyright © ©2017 American Physical Society
eISSN
2469-990X
D.O.I.
10.1103/PhysRevFluids.2.063101
Publisher site
See Article on Publisher Site

Abstract

Cross-slot and four-roll-mill microdevices are commonly used for particle manipulation and characterization owing to the stagnation-point flow at the device center. Because of the solid boundaries, these devices may generate extensional Stokes flows where the velocity is a nonlinear function of position associated with a decreased pressure at the particle edges and an increased pressure at the particle middle. Our computational investigation shows that in this class of Stokes flows, an elastic capsule made of a strain-hardening membrane develops two distinct steady-state conformations at strong flows, i.e., an elongated weak dumbbell shape with rounded edges at low flow nonlinearity and a laterally extended dumbbell shape at high flow nonlinearity. These effects are more pronounced for the less strain-hardening capsules which develop a flat extended middle where the two sides of the membrane approach each other. The strong stability properties of the strain-hardening capsules (owing to the development of strong membrane tensions) contrast significantly with the behavior of droplets in these nonlinear flows which are unable to achieve highly deformed steady-state dumbbell shapes owing to their constant surface tension.

Journal

Physical Review FluidsAmerican Physical Society (APS)

Published: Jun 27, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off