Doublon lifetimes in dissipative environments

Doublon lifetimes in dissipative environments We study the dissipative decay of states with a doubly occupied site in a two-electron Hubbard model, known as doublons. For the environment, we consider charge and current noise, which are modeled as a bosonic heat bath that couples to the on-site energies and the tunnel couplings, respectively. It turns out that the dissipative decay depends qualitatively on the type of environment, as for charge noise, the lifetime grows with the electron-electron interaction. For current noise, by contrast, doublons become increasingly unstable with larger interaction. Numerical studies within a Bloch-Redfield approach are complemented by analytical estimates for the decay rates. For typical quantum dot parameters, we predict doublon lifetimes up to 50 ns. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Doublon lifetimes in dissipative environments

Preview Only

Doublon lifetimes in dissipative environments

Abstract

We study the dissipative decay of states with a doubly occupied site in a two-electron Hubbard model, known as doublons. For the environment, we consider charge and current noise, which are modeled as a bosonic heat bath that couples to the on-site energies and the tunnel couplings, respectively. It turns out that the dissipative decay depends qualitatively on the type of environment, as for charge noise, the lifetime grows with the electron-electron interaction. For current noise, by contrast, doublons become increasingly unstable with larger interaction. Numerical studies within a Bloch-Redfield approach are complemented by analytical estimates for the decay rates. For typical quantum dot parameters, we predict doublon lifetimes up to 50 ns.
Loading next page...
 
/lp/aps_physical/doublon-lifetimes-in-dissipative-environments-6tRJtFqVqI
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.96.045408
Publisher site
See Article on Publisher Site

Abstract

We study the dissipative decay of states with a doubly occupied site in a two-electron Hubbard model, known as doublons. For the environment, we consider charge and current noise, which are modeled as a bosonic heat bath that couples to the on-site energies and the tunnel couplings, respectively. It turns out that the dissipative decay depends qualitatively on the type of environment, as for charge noise, the lifetime grows with the electron-electron interaction. For current noise, by contrast, doublons become increasingly unstable with larger interaction. Numerical studies within a Bloch-Redfield approach are complemented by analytical estimates for the decay rates. For typical quantum dot parameters, we predict doublon lifetimes up to 50 ns.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Jul 10, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off