Dome of magnetic order inside the nematic phase of sulfur-substituted FeSe under pressure

Dome of magnetic order inside the nematic phase of sulfur-substituted FeSe under pressure The pressure dependence of the structural, magnetic, and superconducting transitions and of the superconducting upper critical field were studied in sulfur-substituted Fe(Se1−xSx). Resistance measurements were performed on single crystals with three substitution levels (x=0.043, 0.096, 0.12) under hydrostatic pressures up to 1.8 GPa and in magnetic fields up to 9 T and were compared to data on pure FeSe. Our results illustrate the effects of chemical and physical pressure on Fe(Se1−xSx). On increasing sulfur content, magnetic order in the low-pressure range is strongly suppressed to a small domelike region in the phase diagrams. However, Ts is much less suppressed by sulfur substitution, and Tc of Fe(Se1−xSx) exhibits similar nonmonotonic pressure dependence with a local maximum and a local minimum present in the low-pressure range for all x. The local maximum in Tc coincides with the emergence of the magnetic order above Tc. At this pressure the slope of the upper critical field decreases abruptly, which may indicate a Fermi-surface reconstruction. The minimum of Tc correlates with a broad maximum of the upper critical field slope normalized by Tc. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Dome of magnetic order inside the nematic phase of sulfur-substituted FeSe under pressure

Preview Only

Dome of magnetic order inside the nematic phase of sulfur-substituted FeSe under pressure

Abstract

The pressure dependence of the structural, magnetic, and superconducting transitions and of the superconducting upper critical field were studied in sulfur-substituted Fe(Se1−xSx). Resistance measurements were performed on single crystals with three substitution levels (x=0.043, 0.096, 0.12) under hydrostatic pressures up to 1.8 GPa and in magnetic fields up to 9 T and were compared to data on pure FeSe. Our results illustrate the effects of chemical and physical pressure on Fe(Se1−xSx). On increasing sulfur content, magnetic order in the low-pressure range is strongly suppressed to a small domelike region in the phase diagrams. However, Ts is much less suppressed by sulfur substitution, and Tc of Fe(Se1−xSx) exhibits similar nonmonotonic pressure dependence with a local maximum and a local minimum present in the low-pressure range for all x. The local maximum in Tc coincides with the emergence of the magnetic order above Tc. At this pressure the slope of the upper critical field decreases abruptly, which may indicate a Fermi-surface reconstruction. The minimum of Tc correlates with a broad maximum of the upper critical field slope normalized by Tc.
Loading next page...
 
/lp/aps_physical/dome-of-magnetic-order-inside-the-nematic-phase-of-sulfur-substituted-tItcXl0MOq
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.96.024511
Publisher site
See Article on Publisher Site

Abstract

The pressure dependence of the structural, magnetic, and superconducting transitions and of the superconducting upper critical field were studied in sulfur-substituted Fe(Se1−xSx). Resistance measurements were performed on single crystals with three substitution levels (x=0.043, 0.096, 0.12) under hydrostatic pressures up to 1.8 GPa and in magnetic fields up to 9 T and were compared to data on pure FeSe. Our results illustrate the effects of chemical and physical pressure on Fe(Se1−xSx). On increasing sulfur content, magnetic order in the low-pressure range is strongly suppressed to a small domelike region in the phase diagrams. However, Ts is much less suppressed by sulfur substitution, and Tc of Fe(Se1−xSx) exhibits similar nonmonotonic pressure dependence with a local maximum and a local minimum present in the low-pressure range for all x. The local maximum in Tc coincides with the emergence of the magnetic order above Tc. At this pressure the slope of the upper critical field decreases abruptly, which may indicate a Fermi-surface reconstruction. The minimum of Tc correlates with a broad maximum of the upper critical field slope normalized by Tc.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Jul 18, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off