Dissipative Landau-Zener problem and thermally assisted Quantum Annealing

Dissipative Landau-Zener problem and thermally assisted Quantum Annealing We revisit here the issue of thermally assisted Quantum Annealing by a detailed study of the dissipative Landau-Zener problem in the presence of a Caldeira-Leggett bath of harmonic oscillators, using both a weak-coupling quantum master equation and a quasiadiabatic path-integral approach. Building on the known zero-temperature exact results [Wubs , Phys. Rev. Lett. 97, 200404 (2006)PRLTAO0031-900710.1103/PhysRevLett.97.200404], we show that a finite temperature bath can have a beneficial effect on the ground-state probability only if it couples also to a spin direction that is transverse with respect to the driving field, while no improvement is obtained for the more commonly studied purely longitudinal coupling. In particular, we also highlight that, for a transverse coupling, raising the bath temperature further improves the ground-state probability in the fast-driving regime. We discuss the relevance of these findings for the current quantum-annealing flux qubit chips. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Dissipative Landau-Zener problem and thermally assisted Quantum Annealing

Preview Only

Dissipative Landau-Zener problem and thermally assisted Quantum Annealing

Abstract

We revisit here the issue of thermally assisted Quantum Annealing by a detailed study of the dissipative Landau-Zener problem in the presence of a Caldeira-Leggett bath of harmonic oscillators, using both a weak-coupling quantum master equation and a quasiadiabatic path-integral approach. Building on the known zero-temperature exact results [Wubs , Phys. Rev. Lett. 97, 200404 (2006)PRLTAO0031-900710.1103/PhysRevLett.97.200404], we show that a finite temperature bath can have a beneficial effect on the ground-state probability only if it couples also to a spin direction that is transverse with respect to the driving field, while no improvement is obtained for the more commonly studied purely longitudinal coupling. In particular, we also highlight that, for a transverse coupling, raising the bath temperature further improves the ground-state probability in the fast-driving regime. We discuss the relevance of these findings for the current quantum-annealing flux qubit chips.
Loading next page...
 
/lp/aps_physical/dissipative-landau-zener-problem-and-thermally-assisted-quantum-i3gPgofP0F
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.96.054301
Publisher site
See Article on Publisher Site

Abstract

We revisit here the issue of thermally assisted Quantum Annealing by a detailed study of the dissipative Landau-Zener problem in the presence of a Caldeira-Leggett bath of harmonic oscillators, using both a weak-coupling quantum master equation and a quasiadiabatic path-integral approach. Building on the known zero-temperature exact results [Wubs , Phys. Rev. Lett. 97, 200404 (2006)PRLTAO0031-900710.1103/PhysRevLett.97.200404], we show that a finite temperature bath can have a beneficial effect on the ground-state probability only if it couples also to a spin direction that is transverse with respect to the driving field, while no improvement is obtained for the more commonly studied purely longitudinal coupling. In particular, we also highlight that, for a transverse coupling, raising the bath temperature further improves the ground-state probability in the fast-driving regime. We discuss the relevance of these findings for the current quantum-annealing flux qubit chips.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Aug 1, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial