Discrete-time dynamic network model for the spread of susceptible-infective-recovered diseases

Discrete-time dynamic network model for the spread of susceptible-infective-recovered diseases We propose a discrete-time dynamic network model describing the spread of susceptible-infective-recovered diseases in a population. We consider the case in which the nodes in the network change their links due to social mixing dynamics as well as in response to the disease. The model shows the behavior that, as we increase social mixing, disease spread is inhibited in certain cases, while in other cases it is enhanced. We also extend this dynamic network model to take into account the case of hidden infection. Here we find that, as expected, the disease spreads more readily if there is a time period after contracting the disease during which an individual is infective but is not known to have the disease. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review E American Physical Society (APS)

Discrete-time dynamic network model for the spread of susceptible-infective-recovered diseases

Preview Only

Discrete-time dynamic network model for the spread of susceptible-infective-recovered diseases

Abstract

We propose a discrete-time dynamic network model describing the spread of susceptible-infective-recovered diseases in a population. We consider the case in which the nodes in the network change their links due to social mixing dynamics as well as in response to the disease. The model shows the behavior that, as we increase social mixing, disease spread is inhibited in certain cases, while in other cases it is enhanced. We also extend this dynamic network model to take into account the case of hidden infection. Here we find that, as expected, the disease spreads more readily if there is a time period after contracting the disease during which an individual is infective but is not known to have the disease.
Loading next page...
 
/lp/aps_physical/discrete-time-dynamic-network-model-for-the-spread-of-susceptible-qnUcnniewq
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1539-3755
eISSN
550-2376
D.O.I.
10.1103/PhysRevE.96.012305
Publisher site
See Article on Publisher Site

Abstract

We propose a discrete-time dynamic network model describing the spread of susceptible-infective-recovered diseases in a population. We consider the case in which the nodes in the network change their links due to social mixing dynamics as well as in response to the disease. The model shows the behavior that, as we increase social mixing, disease spread is inhibited in certain cases, while in other cases it is enhanced. We also extend this dynamic network model to take into account the case of hidden infection. Here we find that, as expected, the disease spreads more readily if there is a time period after contracting the disease during which an individual is infective but is not known to have the disease.

Journal

Physical Review EAmerican Physical Society (APS)

Published: Jul 5, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial