Direct Extraction of Excitation Energies from Ensemble Density-Functional Theory

Direct Extraction of Excitation Energies from Ensemble Density-Functional Theory A very specific ensemble of ground and excited states is shown to yield an exact formula for any excitation energy as a simple correction to the energy difference between orbitals of the Kohn-Sham ground state. This alternative scheme avoids either the need to calculate many unoccupied levels as in time-dependent density functional theory (TDDFT) or the need for many self-consistent ensemble calculations. The symmetry-eigenstate Hartree-exchange (SEHX) approximation yields results comparable to standard TDDFT for atoms. With this formalism, SEHX yields approximate double excitations, which are missed by adiabatic TDDFT. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review Letters American Physical Society (APS)

Direct Extraction of Excitation Energies from Ensemble Density-Functional Theory

Preview Only

Direct Extraction of Excitation Energies from Ensemble Density-Functional Theory

Abstract

A very specific ensemble of ground and excited states is shown to yield an exact formula for any excitation energy as a simple correction to the energy difference between orbitals of the Kohn-Sham ground state. This alternative scheme avoids either the need to calculate many unoccupied levels as in time-dependent density functional theory (TDDFT) or the need for many self-consistent ensemble calculations. The symmetry-eigenstate Hartree-exchange (SEHX) approximation yields results comparable to standard TDDFT for atoms. With this formalism, SEHX yields approximate double excitations, which are missed by adiabatic TDDFT.
Loading next page...
 
/lp/aps_physical/direct-extraction-of-excitation-energies-from-ensemble-density-sDoU74owfE
Publisher
The American Physical Society
Copyright
Copyright © © 2017 American Physical Society
ISSN
0031-9007
eISSN
1079-7114
D.O.I.
10.1103/PhysRevLett.119.033003
Publisher site
See Article on Publisher Site

Abstract

A very specific ensemble of ground and excited states is shown to yield an exact formula for any excitation energy as a simple correction to the energy difference between orbitals of the Kohn-Sham ground state. This alternative scheme avoids either the need to calculate many unoccupied levels as in time-dependent density functional theory (TDDFT) or the need for many self-consistent ensemble calculations. The symmetry-eigenstate Hartree-exchange (SEHX) approximation yields results comparable to standard TDDFT for atoms. With this formalism, SEHX yields approximate double excitations, which are missed by adiabatic TDDFT.

Journal

Physical Review LettersAmerican Physical Society (APS)

Published: Jul 21, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off