Direct Determination of Dynamic Properties of Coulomb and Yukawa Classical One-Component Plasmas

Direct Determination of Dynamic Properties of Coulomb and Yukawa Classical One-Component Plasmas Dynamic characteristics of strongly coupled classical one-component Coulomb and Yukawa plasmas are obtained within the nonperturbative model-free moment approach without any data input from simulations so that the dynamic structure factor (DSF) satisfies the first three nonvanishing sum rules automatically. The DSF, dispersion, decay, sound speed, and other characteristics of the collective modes are determined using exclusively the static structure factor calculated from various theoretical approaches including the hypernetted chain approximation. A good quantitative agreement with molecular dynamics simulation data is achieved. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review Letters American Physical Society (APS)

Direct Determination of Dynamic Properties of Coulomb and Yukawa Classical One-Component Plasmas

Preview Only

Direct Determination of Dynamic Properties of Coulomb and Yukawa Classical One-Component Plasmas

Abstract

Dynamic characteristics of strongly coupled classical one-component Coulomb and Yukawa plasmas are obtained within the nonperturbative model-free moment approach without any data input from simulations so that the dynamic structure factor (DSF) satisfies the first three nonvanishing sum rules automatically. The DSF, dispersion, decay, sound speed, and other characteristics of the collective modes are determined using exclusively the static structure factor calculated from various theoretical approaches including the hypernetted chain approximation. A good quantitative agreement with molecular dynamics simulation data is achieved.
Loading next page...
 
/lp/aps_physical/direct-determination-of-dynamic-properties-of-coulomb-and-yukawa-Tosik4iEV0
Publisher
American Physical Society (APS)
Copyright
Copyright © © 2017 American Physical Society
ISSN
0031-9007
eISSN
1079-7114
D.O.I.
10.1103/PhysRevLett.119.045001
Publisher site
See Article on Publisher Site

Abstract

Dynamic characteristics of strongly coupled classical one-component Coulomb and Yukawa plasmas are obtained within the nonperturbative model-free moment approach without any data input from simulations so that the dynamic structure factor (DSF) satisfies the first three nonvanishing sum rules automatically. The DSF, dispersion, decay, sound speed, and other characteristics of the collective modes are determined using exclusively the static structure factor calculated from various theoretical approaches including the hypernetted chain approximation. A good quantitative agreement with molecular dynamics simulation data is achieved.

Journal

Physical Review LettersAmerican Physical Society (APS)

Published: Jul 28, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off