Dirac fermions and pseudomagnetic fields in two-dimensional electron gases with triangular antidot lattices

Dirac fermions and pseudomagnetic fields in two-dimensional electron gases with triangular... We investigate theoretically the electronic properties of two-dimensional electron gases (2DEGs) with regular and distorted triangular antidot lattices. We show that the triangular antidot lattices embedded in 2DEGs behave like artificial graphene and host Dirac fermions. By introducing the Wannier representation, we obtain a tight-binding Hamiltonian including the second-nearest-neighboring hopping, which agrees well with the numerically exact solutions. Based on the tight-binding model, we find that spatially nonuniform distortions of the antidot lattices strongly modify the electronic structures, generate pseudomagnetic fields and the well-defined Landau levels. In contrast to graphene, we can design the nonuniform distortions to generate various configurations of pseudomagnetic fields. We show that the snake orbital states arise by designing the ±B pseudomagnetic field configuration. We find that the disorders of antidot lattices during fabrication would not affect the basic feature of the Dirac electrons, but they lead to a reduction in conductance in strong disorder cases. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Dirac fermions and pseudomagnetic fields in two-dimensional electron gases with triangular antidot lattices

Preview Only

Dirac fermions and pseudomagnetic fields in two-dimensional electron gases with triangular antidot lattices

Abstract

We investigate theoretically the electronic properties of two-dimensional electron gases (2DEGs) with regular and distorted triangular antidot lattices. We show that the triangular antidot lattices embedded in 2DEGs behave like artificial graphene and host Dirac fermions. By introducing the Wannier representation, we obtain a tight-binding Hamiltonian including the second-nearest-neighboring hopping, which agrees well with the numerically exact solutions. Based on the tight-binding model, we find that spatially nonuniform distortions of the antidot lattices strongly modify the electronic structures, generate pseudomagnetic fields and the well-defined Landau levels. In contrast to graphene, we can design the nonuniform distortions to generate various configurations of pseudomagnetic fields. We show that the snake orbital states arise by designing the ±B pseudomagnetic field configuration. We find that the disorders of antidot lattices during fabrication would not affect the basic feature of the Dirac electrons, but they lead to a reduction in conductance in strong disorder cases.
Loading next page...
 
/lp/aps_physical/dirac-fermions-and-pseudomagnetic-fields-in-two-dimensional-electron-CFFNUYPaqw
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.96.035406
Publisher site
See Article on Publisher Site

Abstract

We investigate theoretically the electronic properties of two-dimensional electron gases (2DEGs) with regular and distorted triangular antidot lattices. We show that the triangular antidot lattices embedded in 2DEGs behave like artificial graphene and host Dirac fermions. By introducing the Wannier representation, we obtain a tight-binding Hamiltonian including the second-nearest-neighboring hopping, which agrees well with the numerically exact solutions. Based on the tight-binding model, we find that spatially nonuniform distortions of the antidot lattices strongly modify the electronic structures, generate pseudomagnetic fields and the well-defined Landau levels. In contrast to graphene, we can design the nonuniform distortions to generate various configurations of pseudomagnetic fields. We show that the snake orbital states arise by designing the ±B pseudomagnetic field configuration. We find that the disorders of antidot lattices during fabrication would not affect the basic feature of the Dirac electrons, but they lead to a reduction in conductance in strong disorder cases.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Jul 6, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial