Dependence of the configurational entropy on amorphous structures of a hard-sphere fluid

Dependence of the configurational entropy on amorphous structures of a hard-sphere fluid The free energy of a hard-sphere fluid for which the average energy is trivial signifies how its entropy changes with packing. The packing ηf at which the free energy of the crystalline state becomes lower than that of the disordered fluid state marks the freezing point. For packing fractions η>ηf of the hard-sphere fluid, we use the modified weighted density functional approximation to identify metastable free energy minima intermediate between uniform fluid and crystalline states. The distribution of the sharply localized density profiles, i.e., the inhomogeneous density field ρ(x) characterizing the metastable state is primarily described by a pair function gs(η/η0). η0 is a structural parameter such that for η=η0 the pair function is identical to that for the Bernal random structure. The configurational entropy Sc of the metastable hard-sphere fluid is calculated by subtracting the corresponding vibrational entropy from the total entropy. The extrapolated Sc vanishes as η→ηK and ηK is in agreement with other works. The dependence of ηK on the structural parameter η0 is obtained. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review E American Physical Society (APS)

Dependence of the configurational entropy on amorphous structures of a hard-sphere fluid

Preview Only

Dependence of the configurational entropy on amorphous structures of a hard-sphere fluid

Abstract

The free energy of a hard-sphere fluid for which the average energy is trivial signifies how its entropy changes with packing. The packing ηf at which the free energy of the crystalline state becomes lower than that of the disordered fluid state marks the freezing point. For packing fractions η>ηf of the hard-sphere fluid, we use the modified weighted density functional approximation to identify metastable free energy minima intermediate between uniform fluid and crystalline states. The distribution of the sharply localized density profiles, i.e., the inhomogeneous density field ρ(x) characterizing the metastable state is primarily described by a pair function gs(η/η0). η0 is a structural parameter such that for η=η0 the pair function is identical to that for the Bernal random structure. The configurational entropy Sc of the metastable hard-sphere fluid is calculated by subtracting the corresponding vibrational entropy from the total entropy. The extrapolated Sc vanishes as η→ηK and ηK is in agreement with other works. The dependence of ηK on the structural parameter η0 is obtained.
Loading next page...
 
/lp/aps_physical/dependence-of-the-configurational-entropy-on-amorphous-structures-of-a-pNZjqvoRkF
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1539-3755
eISSN
550-2376
D.O.I.
10.1103/PhysRevE.96.012124
Publisher site
See Article on Publisher Site

Abstract

The free energy of a hard-sphere fluid for which the average energy is trivial signifies how its entropy changes with packing. The packing ηf at which the free energy of the crystalline state becomes lower than that of the disordered fluid state marks the freezing point. For packing fractions η>ηf of the hard-sphere fluid, we use the modified weighted density functional approximation to identify metastable free energy minima intermediate between uniform fluid and crystalline states. The distribution of the sharply localized density profiles, i.e., the inhomogeneous density field ρ(x) characterizing the metastable state is primarily described by a pair function gs(η/η0). η0 is a structural parameter such that for η=η0 the pair function is identical to that for the Bernal random structure. The configurational entropy Sc of the metastable hard-sphere fluid is calculated by subtracting the corresponding vibrational entropy from the total entropy. The extrapolated Sc vanishes as η→ηK and ηK is in agreement with other works. The dependence of ηK on the structural parameter η0 is obtained.

Journal

Physical Review EAmerican Physical Society (APS)

Published: Jul 12, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off