Crossover from Classical to Fermi Liquid Behavior in Dense Plasmas

Crossover from Classical to Fermi Liquid Behavior in Dense Plasmas We explore the crossover from classical plasma to quantum Fermi liquid behavior of electrons in dense plasmas. To this end, we analyze the evolution with density and temperature of the momentum lifetime of a test electron introduced in a dense electron gas. This allows us (1) to determine the boundaries of the crossover region in the temperature-density plane and to shed light on the evolution of scattering properties across it, (2) to quantify the role of the fermionic nature of electrons on electronic collisions across the crossover region, and (3) to explain how the concept of the Coulomb logarithm emerges at a high enough temperature but disappears at a low enough temperature. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review Letters American Physical Society (APS)

Crossover from Classical to Fermi Liquid Behavior in Dense Plasmas

Preview Only

Crossover from Classical to Fermi Liquid Behavior in Dense Plasmas

Abstract

We explore the crossover from classical plasma to quantum Fermi liquid behavior of electrons in dense plasmas. To this end, we analyze the evolution with density and temperature of the momentum lifetime of a test electron introduced in a dense electron gas. This allows us (1) to determine the boundaries of the crossover region in the temperature-density plane and to shed light on the evolution of scattering properties across it, (2) to quantify the role of the fermionic nature of electrons on electronic collisions across the crossover region, and (3) to explain how the concept of the Coulomb logarithm emerges at a high enough temperature but disappears at a low enough temperature.
Loading next page...
 
/lp/aps_physical/crossover-from-classical-to-fermi-liquid-behavior-in-dense-plasmas-WnSWs3Lkif
Publisher
The American Physical Society
Copyright
Copyright © © 2017 American Physical Society
ISSN
0031-9007
eISSN
1079-7114
D.O.I.
10.1103/PhysRevLett.119.045002
Publisher site
See Article on Publisher Site

Abstract

We explore the crossover from classical plasma to quantum Fermi liquid behavior of electrons in dense plasmas. To this end, we analyze the evolution with density and temperature of the momentum lifetime of a test electron introduced in a dense electron gas. This allows us (1) to determine the boundaries of the crossover region in the temperature-density plane and to shed light on the evolution of scattering properties across it, (2) to quantify the role of the fermionic nature of electrons on electronic collisions across the crossover region, and (3) to explain how the concept of the Coulomb logarithm emerges at a high enough temperature but disappears at a low enough temperature.

Journal

Physical Review LettersAmerican Physical Society (APS)

Published: Jul 28, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial