Criticality in Brownian ensembles

Criticality in Brownian ensembles A Brownian ensemble appears as a nonequilibrium state of transition from one universality class of random matrix ensembles to another one. The parameter governing the transition is, in general, size-dependent, resulting in a rapid approach of the statistics, in infinite size limit, to one of the two universality classes. Our detailed analysis, however, reveals the appearance of a new scale-invariant spectral statistics, nonstationary along the spectrum, associated with multifractal eigenstates, and different from the two end-points if the transition parameter becomes size-independent. The number of such critical points during transition is governed by a competition between the average perturbation strength and the local spectral density. The results obtained here have applications to wide-ranging complex systems, e.g., those modeled by multiparametric Gaussian ensembles or column constrained ensembles. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review E American Physical Society (APS)

Criticality in Brownian ensembles

Preview Only

Criticality in Brownian ensembles

Abstract

A Brownian ensemble appears as a nonequilibrium state of transition from one universality class of random matrix ensembles to another one. The parameter governing the transition is, in general, size-dependent, resulting in a rapid approach of the statistics, in infinite size limit, to one of the two universality classes. Our detailed analysis, however, reveals the appearance of a new scale-invariant spectral statistics, nonstationary along the spectrum, associated with multifractal eigenstates, and different from the two end-points if the transition parameter becomes size-independent. The number of such critical points during transition is governed by a competition between the average perturbation strength and the local spectral density. The results obtained here have applications to wide-ranging complex systems, e.g., those modeled by multiparametric Gaussian ensembles or column constrained ensembles.
Loading next page...
 
/lp/aps_physical/criticality-in-brownian-ensembles-cfXJftTpST
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1539-3755
eISSN
550-2376
D.O.I.
10.1103/PhysRevE.96.012109
Publisher site
See Article on Publisher Site

Abstract

A Brownian ensemble appears as a nonequilibrium state of transition from one universality class of random matrix ensembles to another one. The parameter governing the transition is, in general, size-dependent, resulting in a rapid approach of the statistics, in infinite size limit, to one of the two universality classes. Our detailed analysis, however, reveals the appearance of a new scale-invariant spectral statistics, nonstationary along the spectrum, associated with multifractal eigenstates, and different from the two end-points if the transition parameter becomes size-independent. The number of such critical points during transition is governed by a competition between the average perturbation strength and the local spectral density. The results obtained here have applications to wide-ranging complex systems, e.g., those modeled by multiparametric Gaussian ensembles or column constrained ensembles.

Journal

Physical Review EAmerican Physical Society (APS)

Published: Jul 5, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial