Critical pairing fluctuations in the normal state of a superconductor: Pseudogap and quasiparticle damping

Critical pairing fluctuations in the normal state of a superconductor: Pseudogap and... We study the effect of critical pairing fluctuations on the electronic properties in the normal state of a clean superconductor in three dimensions. Using a functional renormalization group approach to take the non-Gaussian nature of critical fluctuations into account, we show microscopically that in the BCS regime, where the inverse coherence length is much smaller than the Fermi wave vector, critical pairing fluctuations give rise to a nonanalytic contribution to the quasiparticle damping of order TcGiln(80/Gi), where the Ginzburg-Levanyuk number Gi is a dimensionless measure for the width of the critical region. As a consequence, there is a temperature window above Tc where the quasiparticle damping due to critical pairing fluctuations can be larger than the usual T2 Fermi liquid damping due to noncritical scattering processes. On the other hand, in the strong coupling regime where Gi is of order unity, we find within the Gaussian approximation that the quasiparticle damping due to critical pairing fluctuations is proportional to the temperature. Moreover, we show that in the vicinity of the critical temperature Tc the electronic density of states exhibits a fluctuation-induced pseudogap. We also use functional renormalization group methods to derive and classify various types of higher-order scattering processes induced by the pairing interaction in Fermi systems close to the superconducting instability. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Critical pairing fluctuations in the normal state of a superconductor: Pseudogap and quasiparticle damping

Preview Only

Critical pairing fluctuations in the normal state of a superconductor: Pseudogap and quasiparticle damping

Abstract

We study the effect of critical pairing fluctuations on the electronic properties in the normal state of a clean superconductor in three dimensions. Using a functional renormalization group approach to take the non-Gaussian nature of critical fluctuations into account, we show microscopically that in the BCS regime, where the inverse coherence length is much smaller than the Fermi wave vector, critical pairing fluctuations give rise to a nonanalytic contribution to the quasiparticle damping of order TcGiln(80/Gi), where the Ginzburg-Levanyuk number Gi is a dimensionless measure for the width of the critical region. As a consequence, there is a temperature window above Tc where the quasiparticle damping due to critical pairing fluctuations can be larger than the usual T2 Fermi liquid damping due to noncritical scattering processes. On the other hand, in the strong coupling regime where Gi is of order unity, we find within the Gaussian approximation that the quasiparticle damping due to critical pairing fluctuations is proportional to the temperature. Moreover, we show that in the vicinity of the critical temperature Tc the electronic density of states exhibits a fluctuation-induced pseudogap. We also use functional renormalization group methods to derive and classify various types of higher-order scattering processes induced by the pairing interaction in Fermi systems close to the superconducting instability.
Loading next page...
 
/lp/aps_physical/critical-pairing-fluctuations-in-the-normal-state-of-a-superconductor-RHdfUaVMWC
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.96.064506
Publisher site
See Article on Publisher Site

Abstract

We study the effect of critical pairing fluctuations on the electronic properties in the normal state of a clean superconductor in three dimensions. Using a functional renormalization group approach to take the non-Gaussian nature of critical fluctuations into account, we show microscopically that in the BCS regime, where the inverse coherence length is much smaller than the Fermi wave vector, critical pairing fluctuations give rise to a nonanalytic contribution to the quasiparticle damping of order TcGiln(80/Gi), where the Ginzburg-Levanyuk number Gi is a dimensionless measure for the width of the critical region. As a consequence, there is a temperature window above Tc where the quasiparticle damping due to critical pairing fluctuations can be larger than the usual T2 Fermi liquid damping due to noncritical scattering processes. On the other hand, in the strong coupling regime where Gi is of order unity, we find within the Gaussian approximation that the quasiparticle damping due to critical pairing fluctuations is proportional to the temperature. Moreover, we show that in the vicinity of the critical temperature Tc the electronic density of states exhibits a fluctuation-induced pseudogap. We also use functional renormalization group methods to derive and classify various types of higher-order scattering processes induced by the pairing interaction in Fermi systems close to the superconducting instability.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Aug 4, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off