Critical magnetic fields in a superconductor coupled to a superfluid

Critical magnetic fields in a superconductor coupled to a superfluid We study a superconductor that is coupled to a superfluid via density and derivative couplings. Starting from a Lagrangian for two complex scalar fields, we derive a temperature-dependent Ginzburg-Landau potential, which is then used to compute the phase diagram at nonzero temperature and external magnetic field. This includes the calculation of the critical magnetic fields for the transition to an array of magnetic flux tubes, based on an approximation for the interaction between the flux tubes. We find that the transition region between type-I and type-II superconductivity changes qualitatively due to the presence of the superfluid: the phase transitions at the upper and lower critical fields in the type-II regime become first order, opening the possibility of clustered flux tube phases. These flux tube clusters may be realized in the core of neutron stars, where superconducting protons are expected to be coupled to superfluid neutrons. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review D American Physical Society (APS)

Critical magnetic fields in a superconductor coupled to a superfluid

Preview Only

Critical magnetic fields in a superconductor coupled to a superfluid

Abstract

We study a superconductor that is coupled to a superfluid via density and derivative couplings. Starting from a Lagrangian for two complex scalar fields, we derive a temperature-dependent Ginzburg-Landau potential, which is then used to compute the phase diagram at nonzero temperature and external magnetic field. This includes the calculation of the critical magnetic fields for the transition to an array of magnetic flux tubes, based on an approximation for the interaction between the flux tubes. We find that the transition region between type-I and type-II superconductivity changes qualitatively due to the presence of the superfluid: the phase transitions at the upper and lower critical fields in the type-II regime become first order, opening the possibility of clustered flux tube phases. These flux tube clusters may be realized in the core of neutron stars, where superconducting protons are expected to be coupled to superfluid neutrons.
Loading next page...
 
/lp/aps_physical/critical-magnetic-fields-in-a-superconductor-coupled-to-a-superfluid-P7jdlZZoL9
Publisher
The American Physical Society
Copyright
Copyright © © 2017 American Physical Society
ISSN
1550-7998
eISSN
1550-2368
D.O.I.
10.1103/PhysRevD.95.116016
Publisher site
See Article on Publisher Site

Abstract

We study a superconductor that is coupled to a superfluid via density and derivative couplings. Starting from a Lagrangian for two complex scalar fields, we derive a temperature-dependent Ginzburg-Landau potential, which is then used to compute the phase diagram at nonzero temperature and external magnetic field. This includes the calculation of the critical magnetic fields for the transition to an array of magnetic flux tubes, based on an approximation for the interaction between the flux tubes. We find that the transition region between type-I and type-II superconductivity changes qualitatively due to the presence of the superfluid: the phase transitions at the upper and lower critical fields in the type-II regime become first order, opening the possibility of clustered flux tube phases. These flux tube clusters may be realized in the core of neutron stars, where superconducting protons are expected to be coupled to superfluid neutrons.

Journal

Physical Review DAmerican Physical Society (APS)

Published: Jun 1, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial