Critical eigenstates and their properties in one- and two-dimensional quasicrystals

Critical eigenstates and their properties in one- and two-dimensional quasicrystals We present exact solutions for some eigenstates of hopping models on one- and two-dimensional quasiperiodic tilings and show that they are “critical” states, by explicitly computing their multifractal spectra. These eigenstates are shown to be generically present in 1D quasiperiodic chains, of which the Fibonacci chain is a special case. We then describe properties of the ground states for a class of tight-binding Hamiltonians on the 2D Penrose and Ammann-Beenker tilings. Exact and numerical solutions are seen to be in good agreement. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Critical eigenstates and their properties in one- and two-dimensional quasicrystals

Preview Only

Critical eigenstates and their properties in one- and two-dimensional quasicrystals

Abstract

We present exact solutions for some eigenstates of hopping models on one- and two-dimensional quasiperiodic tilings and show that they are “critical” states, by explicitly computing their multifractal spectra. These eigenstates are shown to be generically present in 1D quasiperiodic chains, of which the Fibonacci chain is a special case. We then describe properties of the ground states for a class of tight-binding Hamiltonians on the 2D Penrose and Ammann-Beenker tilings. Exact and numerical solutions are seen to be in good agreement.
Loading next page...
 
/lp/aps_physical/critical-eigenstates-and-their-properties-in-one-and-two-dimensional-rVjjK05mTZ
Publisher
American Physical Society (APS)
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.96.045138
Publisher site
See Article on Publisher Site

Abstract

We present exact solutions for some eigenstates of hopping models on one- and two-dimensional quasiperiodic tilings and show that they are “critical” states, by explicitly computing their multifractal spectra. These eigenstates are shown to be generically present in 1D quasiperiodic chains, of which the Fibonacci chain is a special case. We then describe properties of the ground states for a class of tight-binding Hamiltonians on the 2D Penrose and Ammann-Beenker tilings. Exact and numerical solutions are seen to be in good agreement.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Jul 26, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off