# Covariant chiral kinetic equation in the Wigner function approach

Covariant chiral kinetic equation in the Wigner function approach The covariant chiral kinetic equation (CCKE) is derived from the four-dimensional Wigner function by an improved perturbative method under the static equilibrium conditions. The chiral kinetic equation in three dimensions can be obtained by integration over the time component of the four-momentum. There is freedom to add more terms to the CCKE allowed by conservation laws. In the derivation of the three-dimensional equation, there is also freedom to choose coefficients of some terms in dx0/dτ and dx/dτ [τ is a parameter along the worldline, and (x0,x) denotes the time-space position of a particle] whose three-momentum integrals are vanishing. So the three-dimensional chiral kinetic equation derived from the CCKE is not uniquely determined in the current approach. The key assumption of our approach is the perturbation in powers of space-time derivative and constant electromagnetic field strength tensor under the static equilibrium conditions. To go beyond the current approach and overcome these problems one needs a new way of building up the three-dimensional chiral kinetic equation from the CCKE or directly from covariant Wigner equations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review D American Physical Society (APS)

# Covariant chiral kinetic equation in the Wigner function approach

, Volume 96 (1) – Jul 1, 2017

## Covariant chiral kinetic equation in the Wigner function approach

Abstract

The covariant chiral kinetic equation (CCKE) is derived from the four-dimensional Wigner function by an improved perturbative method under the static equilibrium conditions. The chiral kinetic equation in three dimensions can be obtained by integration over the time component of the four-momentum. There is freedom to add more terms to the CCKE allowed by conservation laws. In the derivation of the three-dimensional equation, there is also freedom to choose coefficients of some terms in dx0/dτ and dx/dτ [τ is a parameter along the worldline, and (x0,x) denotes the time-space position of a particle] whose three-momentum integrals are vanishing. So the three-dimensional chiral kinetic equation derived from the CCKE is not uniquely determined in the current approach. The key assumption of our approach is the perturbation in powers of space-time derivative and constant electromagnetic field strength tensor under the static equilibrium conditions. To go beyond the current approach and overcome these problems one needs a new way of building up the three-dimensional chiral kinetic equation from the CCKE or directly from covariant Wigner equations.

/lp/aps_physical/covariant-chiral-kinetic-equation-in-the-wigner-function-approach-c1jV7YipRR
Publisher
American Physical Society (APS)
ISSN
1550-7998
eISSN
1550-2368
D.O.I.
10.1103/PhysRevD.96.016002
Publisher site
See Article on Publisher Site

### Abstract

The covariant chiral kinetic equation (CCKE) is derived from the four-dimensional Wigner function by an improved perturbative method under the static equilibrium conditions. The chiral kinetic equation in three dimensions can be obtained by integration over the time component of the four-momentum. There is freedom to add more terms to the CCKE allowed by conservation laws. In the derivation of the three-dimensional equation, there is also freedom to choose coefficients of some terms in dx0/dτ and dx/dτ [τ is a parameter along the worldline, and (x0,x) denotes the time-space position of a particle] whose three-momentum integrals are vanishing. So the three-dimensional chiral kinetic equation derived from the CCKE is not uniquely determined in the current approach. The key assumption of our approach is the perturbation in powers of space-time derivative and constant electromagnetic field strength tensor under the static equilibrium conditions. To go beyond the current approach and overcome these problems one needs a new way of building up the three-dimensional chiral kinetic equation from the CCKE or directly from covariant Wigner equations.

### Journal

Physical Review DAmerican Physical Society (APS)

Published: Jul 1, 2017

### Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

### Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

### Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

### Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

DeepDyve

DeepDyve

### Pro

Price

FREE

\$49/month
\$360/year

Save searches from
PubMed

Create lists to

Export lists, citations