Cosmological perturbations and stability of nonsingular cosmologies with limiting curvature

Cosmological perturbations and stability of nonsingular cosmologies with limiting curvature We revisit nonsingular cosmologies in which the limiting curvature hypothesis is realized. We study the cosmological perturbations of the theory and determine the general criteria for stability. For the simplest model, we find generic Ostrogradski instabilities unless the action contains the Weyl tensor squared with the appropriate coefficient. When considering two specific nonsingular cosmological scenarios (one inflationary and one genesis model), we find ghost and gradient instabilities throughout most of the cosmic evolution. Furthermore, we show that the theory is equivalent to a theory of gravity where the action is a general function of the Ricci and Gauss-Bonnet scalars, and this type of theory is known to suffer from instabilities in anisotropic backgrounds. This leads us to construct a new type of curvature-invariant scalar function. We show that it does not have Ostrogradski instabilities, and it avoids ghost and gradient instabilities for most of the interesting background inflationary and genesis trajectories. We further show that it does not possess additional new degrees of freedom in an anisotropic spacetime. This opens the door for studying stable alternative nonsingular very early Universe cosmologies. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review D American Physical Society (APS)

Cosmological perturbations and stability of nonsingular cosmologies with limiting curvature

Preview Only

Cosmological perturbations and stability of nonsingular cosmologies with limiting curvature

Abstract

We revisit nonsingular cosmologies in which the limiting curvature hypothesis is realized. We study the cosmological perturbations of the theory and determine the general criteria for stability. For the simplest model, we find generic Ostrogradski instabilities unless the action contains the Weyl tensor squared with the appropriate coefficient. When considering two specific nonsingular cosmological scenarios (one inflationary and one genesis model), we find ghost and gradient instabilities throughout most of the cosmic evolution. Furthermore, we show that the theory is equivalent to a theory of gravity where the action is a general function of the Ricci and Gauss-Bonnet scalars, and this type of theory is known to suffer from instabilities in anisotropic backgrounds. This leads us to construct a new type of curvature-invariant scalar function. We show that it does not have Ostrogradski instabilities, and it avoids ghost and gradient instabilities for most of the interesting background inflationary and genesis trajectories. We further show that it does not possess additional new degrees of freedom in an anisotropic spacetime. This opens the door for studying stable alternative nonsingular very early Universe cosmologies.
Loading next page...
 
/lp/aps_physical/cosmological-perturbations-and-stability-of-nonsingular-cosmologies-J39LlWBnGh
Publisher
American Physical Society (APS)
Copyright
Copyright © © 2017 American Physical Society
ISSN
1550-7998
eISSN
1550-2368
D.O.I.
10.1103/PhysRevD.96.043502
Publisher site
See Article on Publisher Site

Abstract

We revisit nonsingular cosmologies in which the limiting curvature hypothesis is realized. We study the cosmological perturbations of the theory and determine the general criteria for stability. For the simplest model, we find generic Ostrogradski instabilities unless the action contains the Weyl tensor squared with the appropriate coefficient. When considering two specific nonsingular cosmological scenarios (one inflationary and one genesis model), we find ghost and gradient instabilities throughout most of the cosmic evolution. Furthermore, we show that the theory is equivalent to a theory of gravity where the action is a general function of the Ricci and Gauss-Bonnet scalars, and this type of theory is known to suffer from instabilities in anisotropic backgrounds. This leads us to construct a new type of curvature-invariant scalar function. We show that it does not have Ostrogradski instabilities, and it avoids ghost and gradient instabilities for most of the interesting background inflationary and genesis trajectories. We further show that it does not possess additional new degrees of freedom in an anisotropic spacetime. This opens the door for studying stable alternative nonsingular very early Universe cosmologies.

Journal

Physical Review DAmerican Physical Society (APS)

Published: Aug 15, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off