Correspondence between Einstein-Yang-Mills-Lorentz systems and dynamical torsion models

Correspondence between Einstein-Yang-Mills-Lorentz systems and dynamical torsion models In the framework of Einstein-Yang-Mills theories, we study the gauge Lorentz group and establish a particular correspondence between this case and a certain class of theories with torsion within Riemann-Cartan space-times. This relation is specially useful in order to simplify the problem of finding exact solutions to the Einstein-Yang-Mills equations. The applicability of the method is divided into two approaches: one associated with the Lorentz group SO(1,n-1) of the space-time rotations, and another one with its subgroup SO(n-2). Solutions for both cases are presented by the explicit use of this correspondence and, interestingly, for the last one by imposing on our ansatz the same kind of rotation and reflection symmetry properties as for a nonvanishing space-time torsion. Although these solutions were found in previous literature by a different approach, our method provides an alternative way to obtain them, and it may be used in future research to find other exact solutions within this theory. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review D American Physical Society (APS)

Correspondence between Einstein-Yang-Mills-Lorentz systems and dynamical torsion models

Preview Only

Correspondence between Einstein-Yang-Mills-Lorentz systems and dynamical torsion models

Abstract

In the framework of Einstein-Yang-Mills theories, we study the gauge Lorentz group and establish a particular correspondence between this case and a certain class of theories with torsion within Riemann-Cartan space-times. This relation is specially useful in order to simplify the problem of finding exact solutions to the Einstein-Yang-Mills equations. The applicability of the method is divided into two approaches: one associated with the Lorentz group SO(1,n-1) of the space-time rotations, and another one with its subgroup SO(n-2). Solutions for both cases are presented by the explicit use of this correspondence and, interestingly, for the last one by imposing on our ansatz the same kind of rotation and reflection symmetry properties as for a nonvanishing space-time torsion. Although these solutions were found in previous literature by a different approach, our method provides an alternative way to obtain them, and it may be used in future research to find other exact solutions within this theory.
Loading next page...
 
/lp/aps_physical/correspondence-between-einstein-yang-mills-lorentz-systems-and-IEdewndA5q
Publisher
The American Physical Society
Copyright
Copyright © © 2017 American Physical Society
ISSN
1550-7998
eISSN
1550-2368
D.O.I.
10.1103/PhysRevD.96.024025
Publisher site
See Article on Publisher Site

Abstract

In the framework of Einstein-Yang-Mills theories, we study the gauge Lorentz group and establish a particular correspondence between this case and a certain class of theories with torsion within Riemann-Cartan space-times. This relation is specially useful in order to simplify the problem of finding exact solutions to the Einstein-Yang-Mills equations. The applicability of the method is divided into two approaches: one associated with the Lorentz group SO(1,n-1) of the space-time rotations, and another one with its subgroup SO(n-2). Solutions for both cases are presented by the explicit use of this correspondence and, interestingly, for the last one by imposing on our ansatz the same kind of rotation and reflection symmetry properties as for a nonvanishing space-time torsion. Although these solutions were found in previous literature by a different approach, our method provides an alternative way to obtain them, and it may be used in future research to find other exact solutions within this theory.

Journal

Physical Review DAmerican Physical Society (APS)

Published: Jul 15, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off