Continuous-variable approach to the spectral properties and quantum states of the two-component Bose-Hubbard dimer

Continuous-variable approach to the spectral properties and quantum states of the two-component... A bosonic gas formed by two interacting species trapped in a double-well potential features macroscopic localization effects when the interspecies interaction becomes sufficiently strong. A repulsive interaction spatially separates the species into different wells while an attractive interaction confines both species in the same well. We perform a fully analytic study of the transitions from the weak- to the strong-interaction regime by exploiting the semiclassical method in which boson populations are represented in terms of continuous variables. We find an explicit description of low-energy eigenstates and spectrum in terms of the model parameters which includes the neighborhood of the transition point. To test the effectiveness of the continuous-variable method we compare its predictions with the exact results found numerically. Numerical calculations confirm the spectral collapse evidenced by this method when the space localization takes place. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review E American Physical Society (APS)

Continuous-variable approach to the spectral properties and quantum states of the two-component Bose-Hubbard dimer

Preview Only

Continuous-variable approach to the spectral properties and quantum states of the two-component Bose-Hubbard dimer

Abstract

A bosonic gas formed by two interacting species trapped in a double-well potential features macroscopic localization effects when the interspecies interaction becomes sufficiently strong. A repulsive interaction spatially separates the species into different wells while an attractive interaction confines both species in the same well. We perform a fully analytic study of the transitions from the weak- to the strong-interaction regime by exploiting the semiclassical method in which boson populations are represented in terms of continuous variables. We find an explicit description of low-energy eigenstates and spectrum in terms of the model parameters which includes the neighborhood of the transition point. To test the effectiveness of the continuous-variable method we compare its predictions with the exact results found numerically. Numerical calculations confirm the spectral collapse evidenced by this method when the space localization takes place.
Loading next page...
 
/lp/aps_physical/continuous-variable-approach-to-the-spectral-properties-and-quantum-quoRWcW208
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1539-3755
eISSN
550-2376
D.O.I.
10.1103/PhysRevE.95.062142
Publisher site
See Article on Publisher Site

Abstract

A bosonic gas formed by two interacting species trapped in a double-well potential features macroscopic localization effects when the interspecies interaction becomes sufficiently strong. A repulsive interaction spatially separates the species into different wells while an attractive interaction confines both species in the same well. We perform a fully analytic study of the transitions from the weak- to the strong-interaction regime by exploiting the semiclassical method in which boson populations are represented in terms of continuous variables. We find an explicit description of low-energy eigenstates and spectrum in terms of the model parameters which includes the neighborhood of the transition point. To test the effectiveness of the continuous-variable method we compare its predictions with the exact results found numerically. Numerical calculations confirm the spectral collapse evidenced by this method when the space localization takes place.

Journal

Physical Review EAmerican Physical Society (APS)

Published: Jun 30, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial