Constraints on axionlike particles and non-Newtonian gravity from measuring the difference of Casimir forces

Constraints on axionlike particles and non-Newtonian gravity from measuring the difference of... We derive constraints on the coupling constants of axionlike particles to nucleons and on the Yukawa-type corrections to Newton’s gravitational law from the results of recent experiment on measuring the difference of Casimir forces between a Ni-coated sphere and Au and Ni sectors of a structured disc. Over the wide range of axion masses from 2.61 meV to 0.9 eV the obtained constraints on the axion-to-nucleon coupling are up to a factor of 14.6 stronger than all previously known constraints following from experiments on measuring the Casimir interaction. The constraints on non-Newtonian gravity found here are also stronger than all that following from the Casimir- and Cavendish-type experiments over the interaction range from 30 nm to 5.4  μm. They are up to a factor of 177 stronger than the constraints derived recently from measuring the difference of lateral forces. Our constraints confirm previous somewhat stronger limits obtained from the isoelectronic experiment, where the contribution of the Casimir force was nullified. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review D American Physical Society (APS)

Constraints on axionlike particles and non-Newtonian gravity from measuring the difference of Casimir forces

Preview Only

Constraints on axionlike particles and non-Newtonian gravity from measuring the difference of Casimir forces

Abstract

We derive constraints on the coupling constants of axionlike particles to nucleons and on the Yukawa-type corrections to Newton’s gravitational law from the results of recent experiment on measuring the difference of Casimir forces between a Ni-coated sphere and Au and Ni sectors of a structured disc. Over the wide range of axion masses from 2.61 meV to 0.9 eV the obtained constraints on the axion-to-nucleon coupling are up to a factor of 14.6 stronger than all previously known constraints following from experiments on measuring the Casimir interaction. The constraints on non-Newtonian gravity found here are also stronger than all that following from the Casimir- and Cavendish-type experiments over the interaction range from 30 nm to 5.4  μm. They are up to a factor of 177 stronger than the constraints derived recently from measuring the difference of lateral forces. Our constraints confirm previous somewhat stronger limits obtained from the isoelectronic experiment, where the contribution of the Casimir force was nullified.
Loading next page...
 
/lp/aps_physical/constraints-on-axionlike-particles-and-non-newtonian-gravity-from-tQf1srtILX
Publisher
American Physical Society (APS)
Copyright
Copyright © © 2017 American Physical Society
ISSN
1550-7998
eISSN
1550-2368
D.O.I.
10.1103/PhysRevD.95.123013
Publisher site
See Article on Publisher Site

Abstract

We derive constraints on the coupling constants of axionlike particles to nucleons and on the Yukawa-type corrections to Newton’s gravitational law from the results of recent experiment on measuring the difference of Casimir forces between a Ni-coated sphere and Au and Ni sectors of a structured disc. Over the wide range of axion masses from 2.61 meV to 0.9 eV the obtained constraints on the axion-to-nucleon coupling are up to a factor of 14.6 stronger than all previously known constraints following from experiments on measuring the Casimir interaction. The constraints on non-Newtonian gravity found here are also stronger than all that following from the Casimir- and Cavendish-type experiments over the interaction range from 30 nm to 5.4  μm. They are up to a factor of 177 stronger than the constraints derived recently from measuring the difference of lateral forces. Our constraints confirm previous somewhat stronger limits obtained from the isoelectronic experiment, where the contribution of the Casimir force was nullified.

Journal

Physical Review DAmerican Physical Society (APS)

Published: Jun 15, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off