Constraining dark energy dynamics in extended parameter space

Constraining dark energy dynamics in extended parameter space Dynamical dark energy has been recently suggested as a promising and physical way to solve the 3 sigma tension on the value of the Hubble constant H0 between the direct measurement of Riess et al. (2016) (R16, hereafter) and the indirect constraint from cosmic microwave anisotropies obtained by the Planck satellite under the assumption of a ΛCDM model. In this paper, by parametrizing dark energy evolution using the w0-wa approach, and considering a 12 parameter extended scenario, we find that: (a) the tension on the Hubble constant can indeed be solved with dynamical dark energy, (b) a cosmological constant is ruled out at more than 95% c.l. by the Planck+R16 dataset, and (c) all of the standard quintessence and half of the “downward going” dark energy model space (characterized by an equation of state that decreases with time) is also excluded at more than 95% c.l. These results are further confirmed when cosmic shear, CMB lensing, or SN Ia luminosity distance data are also included. The best fit value of the χ2 for the Planck+R16 data set improves by Δχ2=-12.9 when moving to 12 parameters respect to standard ΛCDM. However, tension remains with the BAO dataset. A cosmological constant and small portion of the freezing quintessence models are still in agreement with the Planck+R16+BAO data set at between 68% and 95% c.l. Conversely, for Planck plus a phenomenological H0 prior, both thawing and freezing quintessence models prefer a Hubble constant of less than 70  km/s/Mpc. The general conclusions hold also when considering models with nonzero spatial curvature. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review D American Physical Society (APS)

Constraining dark energy dynamics in extended parameter space

Preview Only

Constraining dark energy dynamics in extended parameter space

Abstract

Dynamical dark energy has been recently suggested as a promising and physical way to solve the 3 sigma tension on the value of the Hubble constant H0 between the direct measurement of Riess et al. (2016) (R16, hereafter) and the indirect constraint from cosmic microwave anisotropies obtained by the Planck satellite under the assumption of a ΛCDM model. In this paper, by parametrizing dark energy evolution using the w0-wa approach, and considering a 12 parameter extended scenario, we find that: (a) the tension on the Hubble constant can indeed be solved with dynamical dark energy, (b) a cosmological constant is ruled out at more than 95% c.l. by the Planck+R16 dataset, and (c) all of the standard quintessence and half of the “downward going” dark energy model space (characterized by an equation of state that decreases with time) is also excluded at more than 95% c.l. These results are further confirmed when cosmic shear, CMB lensing, or SN Ia luminosity distance data are also included. The best fit value of the χ2 for the Planck+R16 data set improves by Δχ2=-12.9 when moving to 12 parameters respect to standard ΛCDM. However, tension remains with the BAO dataset. A cosmological constant and small portion of the freezing quintessence models are still in agreement with the Planck+R16+BAO data set at between 68% and 95% c.l. Conversely, for Planck plus a phenomenological H0 prior, both thawing and freezing quintessence models prefer a Hubble constant of less than 70  km/s/Mpc. The general conclusions hold also when considering models with nonzero spatial curvature.
Loading next page...
 
/lp/aps_physical/constraining-dark-energy-dynamics-in-extended-parameter-space-pTkR2MvQzq
Publisher
American Physical Society (APS)
Copyright
Copyright © © 2017 American Physical Society
ISSN
1550-7998
eISSN
1550-2368
D.O.I.
10.1103/PhysRevD.96.023523
Publisher site
See Article on Publisher Site

Abstract

Dynamical dark energy has been recently suggested as a promising and physical way to solve the 3 sigma tension on the value of the Hubble constant H0 between the direct measurement of Riess et al. (2016) (R16, hereafter) and the indirect constraint from cosmic microwave anisotropies obtained by the Planck satellite under the assumption of a ΛCDM model. In this paper, by parametrizing dark energy evolution using the w0-wa approach, and considering a 12 parameter extended scenario, we find that: (a) the tension on the Hubble constant can indeed be solved with dynamical dark energy, (b) a cosmological constant is ruled out at more than 95% c.l. by the Planck+R16 dataset, and (c) all of the standard quintessence and half of the “downward going” dark energy model space (characterized by an equation of state that decreases with time) is also excluded at more than 95% c.l. These results are further confirmed when cosmic shear, CMB lensing, or SN Ia luminosity distance data are also included. The best fit value of the χ2 for the Planck+R16 data set improves by Δχ2=-12.9 when moving to 12 parameters respect to standard ΛCDM. However, tension remains with the BAO dataset. A cosmological constant and small portion of the freezing quintessence models are still in agreement with the Planck+R16+BAO data set at between 68% and 95% c.l. Conversely, for Planck plus a phenomenological H0 prior, both thawing and freezing quintessence models prefer a Hubble constant of less than 70  km/s/Mpc. The general conclusions hold also when considering models with nonzero spatial curvature.

Journal

Physical Review DAmerican Physical Society (APS)

Published: Jul 15, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off