## Conductance of a superconducting Coulomb-blockaded Majorana nanowire

**Abstract**

Add Journal to My Library
Physical Review B
, Volume 96 (5) – Aug 4, 2017

Preview Only

**Abstract**

/lp/aps_physical/conductance-of-a-superconducting-coulomb-blockaded-majorana-nanowire-Pc1sGj0BvF

- Publisher
- The American Physical Society
- Copyright
- Copyright © ©2017 American Physical Society
- ISSN
- 1098-0121
- eISSN
- 1550-235X
- D.O.I.
- 10.1103/PhysRevB.96.054504
- Publisher site
- See Article on Publisher Site

In the presence of an applied magnetic field introducing Zeeman spin splitting, a superconducting (SC) proximitized one-dimensional (1D) nanowire with spin-orbit coupling can pass through a topological quantum phase transition developing zero-energy topological Majorana bound states (MBSs) on the wire ends. One of the promising experimental platforms in this context is a Coulomb-blockaded island, where by measuring the two-terminal conductance one can in principle investigate the MBS properties. Here, we theoretically study the tunneling transport of a single electron across the superconducting Coulomb-blockaded nanowire at finite temperature in order to obtain the generic conductance equation. By considering all possible scenarios where only MBSs are present at the ends of the nanowire, we compute the nanowire conductance as a function of the magnetic field, the temperature, and the gate voltage. In the simplest 1D topological SC model, the oscillations of the conductance peak spacings (OCPSs) arising from the Majorana overlap from the two wire ends manifest an increasing oscillation amplitude with increasing magnetic field (in disagreement with a recent experimental observation). We develop a generalized finite-temperature master-equation theory including not only multiple subbands in the nanowire, but also the possibility of ordinary Andreev bound states in the nontopological regime. Inclusion of all four effects (temperature, multiple subbands, Andreev bound states, and MBSs) provides a complete picture of the tunneling transport properties of the Coulomb-blockaded nanowire. Based on this complete theory, we indeed obtain OCPSs whose amplitudes decrease with increasing magnetic field in qualitative agreement with recent experimental results, but this happens only for rather high temperatures with multisubband occupancy and the simultaneous presence of both Andreev bound states and MBSs in the system. Thus, the experimentally observed OCPSs manifesting decreasing amplitude with increasing magnetic field can be explained in our theory only if the experimental magnetic field range encompasses both the nontopological and the topological regimes so that both Andreev bound states and Majorana bound states are contributing to these oscillations as well as the applicable electron temperature in the nanowire is rather high. A particularly significant aspect of our theory is that in such a high-temperature Coulomb-blockaded nanowire, the OCPSs no longer have a one-to-one correspondence with the nanowire quasiparticle energy spectrum as is generic in the low-temperature unblockaded situation. This implies that the OCPSs cannot be used to conclude about the low-energy spectrum so that no statement can be made about the so-called “topological protection” based on such OCPSs. In particular, the length dependence of the oscillation peak in such a situation is nongeneric and does not directly contain useful information about the Majorana splitting energy, reflecting only the physics of Andreev bound states in the finite-size nanowires used in the experiment.

Physical Review B – American Physical Society (APS)

**Published: ** Aug 4, 2017

Loading...

but here are related articles that you can start reading right now:

Loading...

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Read from thousands of the leading scholarly journals from *SpringerNature*, *Elsevier*, *Wiley-Blackwell*, *Oxford University Press* and more.

All the latest content is available, no embargo periods.

## “Hi guys, I cannot tell you how much I love this resource. Incredible. I really believe you've hit the nail on the head with this site in regards to solving the research-purchase issue.”

Daniel C.

## “Whoa! It’s like Spotify but for academic articles.”

@Phil_Robichaud

## “I must say, @deepdyve is a fabulous solution to the independent researcher's problem of #access to #information.”

@deepthiw

## “My last article couldn't be possible without the platform @deepdyve that makes journal papers cheaper.”

@JoseServera

DeepDyve ## Freelancer | DeepDyve ## Pro | |
---|---|---|

Price | FREE | $49/month |

Save searches from | ||

Create lists to | ||

Export lists, citations | ||

Read DeepDyve articles | Abstract access only | Unlimited access to over |

20 pages / month | ||

PDF Discount | 20% off | |

Read and print from thousands of top scholarly journals.

System error. Please try again!

or

By signing up, you agree to DeepDyve’s Terms of Service and Privacy Policy.

Already have an account? Log in

Bookmark this article. You can see your Bookmarks on your DeepDyve Library.

To save an article, **log in** first, or **sign up** for a DeepDyve account if you don’t already have one.