Computational design of a robust two-dimensional antiferromagnetic semiconductor

Computational design of a robust two-dimensional antiferromagnetic semiconductor Using density functional theory calculations, we establish the hitherto unknown compound CrCTe3 to be a stable antiferromagnetic semiconductor in the R3¯ crystal structure with an indirect fundamental gap. Successive layers in the bulk compound are weakly bound by van der Waals forces so that individual layers can be easily exfoliated. A monolayer of CrCTe3 is also an antiferromagnetic semiconductor. The monolayer is structurally stable over a large range of compressive and tensile strains, and the antiferromagnetic state is robust over this strain range. Band gap of the monolayer can be tuned by as much as 50% by applying strain in this range. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Computational design of a robust two-dimensional antiferromagnetic semiconductor

Preview Only

Computational design of a robust two-dimensional antiferromagnetic semiconductor

Abstract

Using density functional theory calculations, we establish the hitherto unknown compound CrCTe3 to be a stable antiferromagnetic semiconductor in the R3¯ crystal structure with an indirect fundamental gap. Successive layers in the bulk compound are weakly bound by van der Waals forces so that individual layers can be easily exfoliated. A monolayer of CrCTe3 is also an antiferromagnetic semiconductor. The monolayer is structurally stable over a large range of compressive and tensile strains, and the antiferromagnetic state is robust over this strain range. Band gap of the monolayer can be tuned by as much as 50% by applying strain in this range.
Loading next page...
 
/lp/aps_physical/computational-design-of-a-robust-two-dimensional-antiferromagnetic-toYi5wK9fg
Publisher
American Physical Society (APS)
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.96.045404
Publisher site
See Article on Publisher Site

Abstract

Using density functional theory calculations, we establish the hitherto unknown compound CrCTe3 to be a stable antiferromagnetic semiconductor in the R3¯ crystal structure with an indirect fundamental gap. Successive layers in the bulk compound are weakly bound by van der Waals forces so that individual layers can be easily exfoliated. A monolayer of CrCTe3 is also an antiferromagnetic semiconductor. The monolayer is structurally stable over a large range of compressive and tensile strains, and the antiferromagnetic state is robust over this strain range. Band gap of the monolayer can be tuned by as much as 50% by applying strain in this range.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Jul 6, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off