Computational complexity of exterior products and multiparticle amplitudes of noninteracting fermions in entangled states

Computational complexity of exterior products and multiparticle amplitudes of noninteracting... Noninteracting bosons were proposed to be used for a demonstration of quantum-computing supremacy in a boson-sampling setup. A similar demonstration with fermions would require that the fermions are initially prepared in an entangled state. I suggest that pairwise entanglement of fermions would be sufficient for this purpose. Namely, it is shown that computing multiparticle scattering amplitudes for fermions entangled pairwise in groups of four single-particle states is #P-hard. In linear algebra, such amplitudes are expressed as exterior products of two-forms of rank 2. In particular, a permanent of a N×N matrix may be expressed as an exterior product of N2 two forms of rank 2 in dimension 2N2, which establishes the #P-hardness of the latter. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review A American Physical Society (APS)

Computational complexity of exterior products and multiparticle amplitudes of noninteracting fermions in entangled states

Preview Only

Computational complexity of exterior products and multiparticle amplitudes of noninteracting fermions in entangled states

Abstract

Noninteracting bosons were proposed to be used for a demonstration of quantum-computing supremacy in a boson-sampling setup. A similar demonstration with fermions would require that the fermions are initially prepared in an entangled state. I suggest that pairwise entanglement of fermions would be sufficient for this purpose. Namely, it is shown that computing multiparticle scattering amplitudes for fermions entangled pairwise in groups of four single-particle states is #P-hard. In linear algebra, such amplitudes are expressed as exterior products of two-forms of rank 2. In particular, a permanent of a N×N matrix may be expressed as an exterior product of N2 two forms of rank 2 in dimension 2N2, which establishes the #P-hardness of the latter.
Loading next page...
 
/lp/aps_physical/computational-complexity-of-exterior-products-and-multiparticle-POyVtc7k9t
Publisher
American Physical Society (APS)
Copyright
Copyright © ©2017 American Physical Society
ISSN
1050-2947
eISSN
1094-1622
D.O.I.
10.1103/PhysRevA.96.012322
Publisher site
See Article on Publisher Site

Abstract

Noninteracting bosons were proposed to be used for a demonstration of quantum-computing supremacy in a boson-sampling setup. A similar demonstration with fermions would require that the fermions are initially prepared in an entangled state. I suggest that pairwise entanglement of fermions would be sufficient for this purpose. Namely, it is shown that computing multiparticle scattering amplitudes for fermions entangled pairwise in groups of four single-particle states is #P-hard. In linear algebra, such amplitudes are expressed as exterior products of two-forms of rank 2. In particular, a permanent of a N×N matrix may be expressed as an exterior product of N2 two forms of rank 2 in dimension 2N2, which establishes the #P-hardness of the latter.

Journal

Physical Review AAmerican Physical Society (APS)

Published: Jul 17, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off