Comparing conditions for macrorealism: Leggett-Garg inequalities versus no-signaling in time

Comparing conditions for macrorealism: Leggett-Garg inequalities versus no-signaling in time We consider two different types of conditions which were proposed to test macrorealism in the context of a system described by a single dichotomic variable Q. This is the view that a macroscopic system evolving in time possesses definite properties which can be determined without disturbing the future or past state. The Leggett-Garg (LG) inequalities, the most commonly studied test, are only necessary conditions for macrorealism, but, building on earlier work J. J. Halliwell, Phys. Rev. A 93, 022123 (2016)1050-294710.1103/PhysRevA.93.022123, it is shown that when the four three-time LG inequalities are augmented with a certain set of two-time inequalities also of the LG form, Fine's theorem applies and these augmented conditions are then both necessary and sufficient. A comparison is carried out with a very different set of necessary and sufficient conditions for macrorealism, namely the no-signaling in time (NSIT) conditions proposed by J. Kofler and C. Brukner, Phys. Rev. A 87, 052115 (2013)PLRAAN1050-294710.1103/PhysRevA.87.052115 and L. Clemente and J. Kofler, Phys. Rev. A 91, 062103 (2015)PLRAAN1050-294710.1103/PhysRevA.91.062103, which ensure that all probabilities for Q at one and two times are independent of whether earlier or intermediate measurements are made in a given run, and do not require (but imply) the LG inequalities. We argue that tests based on the LG inequalities have the form of very weak classicality conditions and can be satisfied in the face of moderate interference effects, but those based on NSIT conditions have the form of much stronger coherence witness conditions, satisfied only for zero interference. The two tests differ in their implementation of noninvasive measurability and so are testing different notions of macrorealism: the augmented LG tests are indirect, entailing a combination of the results of different experiments with only compatible quantities measured in each experimental run, in close analogy with Bell tests, and are primarily tests for macrorealism per se; in contrast, the NSIT tests entail sequential measurements of incompatible quantities and are primarily tests for noninvasiveness. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review A American Physical Society (APS)

Comparing conditions for macrorealism: Leggett-Garg inequalities versus no-signaling in time

Preview Only

Comparing conditions for macrorealism: Leggett-Garg inequalities versus no-signaling in time

Abstract

We consider two different types of conditions which were proposed to test macrorealism in the context of a system described by a single dichotomic variable Q. This is the view that a macroscopic system evolving in time possesses definite properties which can be determined without disturbing the future or past state. The Leggett-Garg (LG) inequalities, the most commonly studied test, are only necessary conditions for macrorealism, but, building on earlier work J. J. Halliwell, Phys. Rev. A 93, 022123 (2016)1050-294710.1103/PhysRevA.93.022123, it is shown that when the four three-time LG inequalities are augmented with a certain set of two-time inequalities also of the LG form, Fine's theorem applies and these augmented conditions are then both necessary and sufficient. A comparison is carried out with a very different set of necessary and sufficient conditions for macrorealism, namely the no-signaling in time (NSIT) conditions proposed by J. Kofler and C. Brukner, Phys. Rev. A 87, 052115 (2013)PLRAAN1050-294710.1103/PhysRevA.87.052115 and L. Clemente and J. Kofler, Phys. Rev. A 91, 062103 (2015)PLRAAN1050-294710.1103/PhysRevA.91.062103, which ensure that all probabilities for Q at one and two times are independent of whether earlier or intermediate measurements are made in a given run, and do not require (but imply) the LG inequalities. We argue that tests based on the LG inequalities have the form of very weak classicality conditions and can be satisfied in the face of moderate interference effects, but those based on NSIT conditions have the form of much stronger coherence witness conditions, satisfied only for zero interference. The two tests differ in their implementation of noninvasive measurability and so are testing different notions of macrorealism: the augmented LG tests are indirect, entailing a combination of the results of different experiments with only compatible quantities measured in each experimental run, in close analogy with Bell tests, and are primarily tests for macrorealism per se; in contrast, the NSIT tests entail sequential measurements of incompatible quantities and are primarily tests for noninvasiveness.
Loading next page...
 
/lp/aps_physical/comparing-conditions-for-macrorealism-leggett-garg-inequalities-versus-TE3NuSrGfJ
Publisher
American Physical Society (APS)
Copyright
Copyright © ©2017 American Physical Society
ISSN
1050-2947
eISSN
1094-1622
D.O.I.
10.1103/PhysRevA.96.012121
Publisher site
See Article on Publisher Site

Abstract

We consider two different types of conditions which were proposed to test macrorealism in the context of a system described by a single dichotomic variable Q. This is the view that a macroscopic system evolving in time possesses definite properties which can be determined without disturbing the future or past state. The Leggett-Garg (LG) inequalities, the most commonly studied test, are only necessary conditions for macrorealism, but, building on earlier work J. J. Halliwell, Phys. Rev. A 93, 022123 (2016)1050-294710.1103/PhysRevA.93.022123, it is shown that when the four three-time LG inequalities are augmented with a certain set of two-time inequalities also of the LG form, Fine's theorem applies and these augmented conditions are then both necessary and sufficient. A comparison is carried out with a very different set of necessary and sufficient conditions for macrorealism, namely the no-signaling in time (NSIT) conditions proposed by J. Kofler and C. Brukner, Phys. Rev. A 87, 052115 (2013)PLRAAN1050-294710.1103/PhysRevA.87.052115 and L. Clemente and J. Kofler, Phys. Rev. A 91, 062103 (2015)PLRAAN1050-294710.1103/PhysRevA.91.062103, which ensure that all probabilities for Q at one and two times are independent of whether earlier or intermediate measurements are made in a given run, and do not require (but imply) the LG inequalities. We argue that tests based on the LG inequalities have the form of very weak classicality conditions and can be satisfied in the face of moderate interference effects, but those based on NSIT conditions have the form of much stronger coherence witness conditions, satisfied only for zero interference. The two tests differ in their implementation of noninvasive measurability and so are testing different notions of macrorealism: the augmented LG tests are indirect, entailing a combination of the results of different experiments with only compatible quantities measured in each experimental run, in close analogy with Bell tests, and are primarily tests for macrorealism per se; in contrast, the NSIT tests entail sequential measurements of incompatible quantities and are primarily tests for noninvasiveness.

Journal

Physical Review AAmerican Physical Society (APS)

Published: Jul 20, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off