Comment on “Flow of wet granular materials: A numerical study”

Comment on “Flow of wet granular materials: A numerical study” The effective stress model of Khamseh et al., Phys. Rev. E 92, 022201 (2015)PLEEE81539-375510.1103/PhysRevE.92.022201 is in semiquantitative agreement with the shear stress in simulated steady state flow of a wet granular material. Nonetheless, the predictions are increasingly biased at low normal pressure. The approximation of the capillary stress by a spherical tensor in this model is a sufficient cause of the prediction errors, as shown in this Comment. The re-examination reveals an excellent agreement between the data and the effective stress expression formerly introduced for similar systems, further validating a yet unexplained empirical result. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review E American Physical Society (APS)

Comment on “Flow of wet granular materials: A numerical study”

Preview Only

Comment on “Flow of wet granular materials: A numerical study”

Abstract

The effective stress model of Khamseh et al., Phys. Rev. E 92, 022201 (2015)PLEEE81539-375510.1103/PhysRevE.92.022201 is in semiquantitative agreement with the shear stress in simulated steady state flow of a wet granular material. Nonetheless, the predictions are increasingly biased at low normal pressure. The approximation of the capillary stress by a spherical tensor in this model is a sufficient cause of the prediction errors, as shown in this Comment. The re-examination reveals an excellent agreement between the data and the effective stress expression formerly introduced for similar systems, further validating a yet unexplained empirical result.
Loading next page...
 
/lp/aps_physical/comment-on-flow-of-wet-granular-materials-a-numerical-study-Am2yyZq3nk
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1539-3755
eISSN
550-2376
D.O.I.
10.1103/PhysRevE.96.016901
Publisher site
See Article on Publisher Site

Abstract

The effective stress model of Khamseh et al., Phys. Rev. E 92, 022201 (2015)PLEEE81539-375510.1103/PhysRevE.92.022201 is in semiquantitative agreement with the shear stress in simulated steady state flow of a wet granular material. Nonetheless, the predictions are increasingly biased at low normal pressure. The approximation of the capillary stress by a spherical tensor in this model is a sufficient cause of the prediction errors, as shown in this Comment. The re-examination reveals an excellent agreement between the data and the effective stress expression formerly introduced for similar systems, further validating a yet unexplained empirical result.

Journal

Physical Review EAmerican Physical Society (APS)

Published: Jul 28, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial