Collective Optomechanical Effects in Cavity Quantum Electrodynamics

Collective Optomechanical Effects in Cavity Quantum Electrodynamics We investigate a cavity quantum electrodynamic effect, where the alignment of two-dimensional freely rotating optical dipoles is driven by their collective coupling to the cavity field. By exploiting the formal equivalence of a set of rotating dipoles with a polymer we calculate the partition function of the coupled light-matter system and demonstrate that it exhibits a second order phase transition between a bunched state of isotropic orientations and a stretched one with all the dipoles aligned. Such a transition manifests itself as an intensity-dependent shift of the polariton mode resonance. Our work, lying at the crossroads of cavity quantum electrodynamics and quantum optomechanics has to become the crossroads between cavity quantum electrodynamics and quantum optomechanics. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review Letters American Physical Society (APS)

Collective Optomechanical Effects in Cavity Quantum Electrodynamics

Preview Only

Collective Optomechanical Effects in Cavity Quantum Electrodynamics

Abstract

We investigate a cavity quantum electrodynamic effect, where the alignment of two-dimensional freely rotating optical dipoles is driven by their collective coupling to the cavity field. By exploiting the formal equivalence of a set of rotating dipoles with a polymer we calculate the partition function of the coupled light-matter system and demonstrate that it exhibits a second order phase transition between a bunched state of isotropic orientations and a stretched one with all the dipoles aligned. Such a transition manifests itself as an intensity-dependent shift of the polariton mode resonance. Our work, lying at the crossroads of cavity quantum electrodynamics and quantum optomechanics has to become the crossroads between cavity quantum electrodynamics and quantum optomechanics.
Loading next page...
 
/lp/aps_physical/collective-optomechanical-effects-in-cavity-quantum-electrodynamics-1Pab00FMKn
Publisher
The American Physical Society
Copyright
Copyright © © 2017 American Physical Society
ISSN
0031-9007
eISSN
1079-7114
D.O.I.
10.1103/PhysRevLett.119.043604
Publisher site
See Article on Publisher Site

Abstract

We investigate a cavity quantum electrodynamic effect, where the alignment of two-dimensional freely rotating optical dipoles is driven by their collective coupling to the cavity field. By exploiting the formal equivalence of a set of rotating dipoles with a polymer we calculate the partition function of the coupled light-matter system and demonstrate that it exhibits a second order phase transition between a bunched state of isotropic orientations and a stretched one with all the dipoles aligned. Such a transition manifests itself as an intensity-dependent shift of the polariton mode resonance. Our work, lying at the crossroads of cavity quantum electrodynamics and quantum optomechanics has to become the crossroads between cavity quantum electrodynamics and quantum optomechanics.

Journal

Physical Review LettersAmerican Physical Society (APS)

Published: Jul 28, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off