Collective multiphoton blockade in cavity quantum electrodynamics

Collective multiphoton blockade in cavity quantum electrodynamics We present a study of collective multiphoton blockade in coherently driven atoms in a single-mode cavity. Considering two atoms strongly coupled to an optical cavity, we show that the two-photon blockade with two-photon antibunching, and the three-photon blockade with three-photon antibunching can be observed simultaneously. The three-photon blockade probes both dressed states in the two-photon and three-photon spaces. The two-photon and three-photon blockades strongly depend on the location of the two atoms in the strong-coupling regime. The asymmetry in the atom-cavity coupling constants opens pathways for multiphoton blockade which is also shown to be sensitive to the atomic decay and pumping strengths. The work presented here predicts many quantum statistical features due to the collective behavior of atoms and can be useful to generate nonclassical photon pairs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review A American Physical Society (APS)

Collective multiphoton blockade in cavity quantum electrodynamics

Preview Only

Collective multiphoton blockade in cavity quantum electrodynamics

Abstract

We present a study of collective multiphoton blockade in coherently driven atoms in a single-mode cavity. Considering two atoms strongly coupled to an optical cavity, we show that the two-photon blockade with two-photon antibunching, and the three-photon blockade with three-photon antibunching can be observed simultaneously. The three-photon blockade probes both dressed states in the two-photon and three-photon spaces. The two-photon and three-photon blockades strongly depend on the location of the two atoms in the strong-coupling regime. The asymmetry in the atom-cavity coupling constants opens pathways for multiphoton blockade which is also shown to be sensitive to the atomic decay and pumping strengths. The work presented here predicts many quantum statistical features due to the collective behavior of atoms and can be useful to generate nonclassical photon pairs.
Loading next page...
 
/lp/aps_physical/collective-multiphoton-blockade-in-cavity-quantum-electrodynamics-BjGGZ6gx0j
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1050-2947
eISSN
1094-1622
D.O.I.
10.1103/PhysRevA.95.063842
Publisher site
See Article on Publisher Site

Abstract

We present a study of collective multiphoton blockade in coherently driven atoms in a single-mode cavity. Considering two atoms strongly coupled to an optical cavity, we show that the two-photon blockade with two-photon antibunching, and the three-photon blockade with three-photon antibunching can be observed simultaneously. The three-photon blockade probes both dressed states in the two-photon and three-photon spaces. The two-photon and three-photon blockades strongly depend on the location of the two atoms in the strong-coupling regime. The asymmetry in the atom-cavity coupling constants opens pathways for multiphoton blockade which is also shown to be sensitive to the atomic decay and pumping strengths. The work presented here predicts many quantum statistical features due to the collective behavior of atoms and can be useful to generate nonclassical photon pairs.

Journal

Physical Review AAmerican Physical Society (APS)

Published: Jun 26, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off