Coarsening with nontrivial in-domain dynamics: Correlations and interface fluctuations

Coarsening with nontrivial in-domain dynamics: Correlations and interface fluctuations Using numerical simulations we investigate the space-time properties of a system in which spirals emerge within coarsening domains, thus giving rise to nontrivial internal dynamics. Initially proposed in the context of population dynamics, the studied six-species model exhibits growing domains composed of three species in a rock-paper-scissors relationship. Through the investigation of different quantities, such as space-time correlations and the derived characteristic length, autocorrelation, density of empty sites, and interface width, we demonstrate that the nontrivial dynamics inside the domains affects the coarsening process as well as the properties of the interfaces separating different domains. Domain growth, aging, and interface fluctuations are shown to be governed by exponents whose values differ from those expected in systems with curvature driven coarsening. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review E American Physical Society (APS)

Coarsening with nontrivial in-domain dynamics: Correlations and interface fluctuations

Preview Only

Coarsening with nontrivial in-domain dynamics: Correlations and interface fluctuations

Abstract

Using numerical simulations we investigate the space-time properties of a system in which spirals emerge within coarsening domains, thus giving rise to nontrivial internal dynamics. Initially proposed in the context of population dynamics, the studied six-species model exhibits growing domains composed of three species in a rock-paper-scissors relationship. Through the investigation of different quantities, such as space-time correlations and the derived characteristic length, autocorrelation, density of empty sites, and interface width, we demonstrate that the nontrivial dynamics inside the domains affects the coarsening process as well as the properties of the interfaces separating different domains. Domain growth, aging, and interface fluctuations are shown to be governed by exponents whose values differ from those expected in systems with curvature driven coarsening.
Loading next page...
 
/lp/aps_physical/coarsening-with-nontrivial-in-domain-dynamics-correlations-and-B12CtD0eja
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1539-3755
eISSN
550-2376
D.O.I.
10.1103/PhysRevE.96.012147
Publisher site
See Article on Publisher Site

Abstract

Using numerical simulations we investigate the space-time properties of a system in which spirals emerge within coarsening domains, thus giving rise to nontrivial internal dynamics. Initially proposed in the context of population dynamics, the studied six-species model exhibits growing domains composed of three species in a rock-paper-scissors relationship. Through the investigation of different quantities, such as space-time correlations and the derived characteristic length, autocorrelation, density of empty sites, and interface width, we demonstrate that the nontrivial dynamics inside the domains affects the coarsening process as well as the properties of the interfaces separating different domains. Domain growth, aging, and interface fluctuations are shown to be governed by exponents whose values differ from those expected in systems with curvature driven coarsening.

Journal

Physical Review EAmerican Physical Society (APS)

Published: Jul 24, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off