Classical ergodicity and quantum eigenstate thermalization: Analysis in fully connected Ising ferromagnets

Classical ergodicity and quantum eigenstate thermalization: Analysis in fully connected Ising... We investigate the relation between the classical ergodicity and the quantum eigenstate thermalization in the fully connected Ising ferromagnets. In the case of spin-1/2, an expectation value of an observable in a single-energy eigenstate coincides with the long-time average in the underlying classical dynamics, which is a consequence of the Wentzel-Kramers-Brillouin approximation. In the case of spin-1, the underlying classical dynamics is not necessarily ergodic. In that case, it turns out that, in the thermodynamic limit, the statistics of the expectation values of an observable in the energy eigenstates coincides with the statistics of the long-time averages in the underlying classical dynamics starting from random initial states sampled uniformly from the classical phase space. This feature seems to be a general property in semiclassical systems, and the result presented here is crucial in discussing equilibration, thermalization, and dynamical transitions of such systems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review E American Physical Society (APS)

Classical ergodicity and quantum eigenstate thermalization: Analysis in fully connected Ising ferromagnets

Preview Only

Classical ergodicity and quantum eigenstate thermalization: Analysis in fully connected Ising ferromagnets

Abstract

We investigate the relation between the classical ergodicity and the quantum eigenstate thermalization in the fully connected Ising ferromagnets. In the case of spin-1/2, an expectation value of an observable in a single-energy eigenstate coincides with the long-time average in the underlying classical dynamics, which is a consequence of the Wentzel-Kramers-Brillouin approximation. In the case of spin-1, the underlying classical dynamics is not necessarily ergodic. In that case, it turns out that, in the thermodynamic limit, the statistics of the expectation values of an observable in the energy eigenstates coincides with the statistics of the long-time averages in the underlying classical dynamics starting from random initial states sampled uniformly from the classical phase space. This feature seems to be a general property in semiclassical systems, and the result presented here is crucial in discussing equilibration, thermalization, and dynamical transitions of such systems.
Loading next page...
 
/lp/aps_physical/classical-ergodicity-and-quantum-eigenstate-thermalization-analysis-in-FoOSygLBgZ
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1539-3755
eISSN
550-2376
D.O.I.
10.1103/PhysRevE.96.012134
Publisher site
See Article on Publisher Site

Abstract

We investigate the relation between the classical ergodicity and the quantum eigenstate thermalization in the fully connected Ising ferromagnets. In the case of spin-1/2, an expectation value of an observable in a single-energy eigenstate coincides with the long-time average in the underlying classical dynamics, which is a consequence of the Wentzel-Kramers-Brillouin approximation. In the case of spin-1, the underlying classical dynamics is not necessarily ergodic. In that case, it turns out that, in the thermodynamic limit, the statistics of the expectation values of an observable in the energy eigenstates coincides with the statistics of the long-time averages in the underlying classical dynamics starting from random initial states sampled uniformly from the classical phase space. This feature seems to be a general property in semiclassical systems, and the result presented here is crucial in discussing equilibration, thermalization, and dynamical transitions of such systems.

Journal

Physical Review EAmerican Physical Society (APS)

Published: Jul 17, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off