Charge and spin transport on graphene grain boundaries in a quantizing magnetic field

Charge and spin transport on graphene grain boundaries in a quantizing magnetic field We study charge and spin transport along grain boundaries in single layer graphene in the presence of a quantizing perpendicular magnetic field. Transport states in a grain boundary are produced by the hybridization of Landau zero modes with interfacial states. In selected energy regimes quantum Hall edge states can be deflected either fully or partially into grain boundary states. The degree of edge state deflection is studied in the nonlocal conductance and in the shot noise. We also consider the possibility of grain boundaries as gate-switchable spin filters, a functionality enabled by counterpropagating transport channels laterally confined in the grain boundary. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Charge and spin transport on graphene grain boundaries in a quantizing magnetic field

Preview Only

Charge and spin transport on graphene grain boundaries in a quantizing magnetic field

Abstract

We study charge and spin transport along grain boundaries in single layer graphene in the presence of a quantizing perpendicular magnetic field. Transport states in a grain boundary are produced by the hybridization of Landau zero modes with interfacial states. In selected energy regimes quantum Hall edge states can be deflected either fully or partially into grain boundary states. The degree of edge state deflection is studied in the nonlocal conductance and in the shot noise. We also consider the possibility of grain boundaries as gate-switchable spin filters, a functionality enabled by counterpropagating transport channels laterally confined in the grain boundary.
Loading next page...
 
/lp/aps_physical/charge-and-spin-transport-on-graphene-grain-boundaries-in-a-quantizing-BsTFno1jQg
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.96.041403
Publisher site
See Article on Publisher Site

Abstract

We study charge and spin transport along grain boundaries in single layer graphene in the presence of a quantizing perpendicular magnetic field. Transport states in a grain boundary are produced by the hybridization of Landau zero modes with interfacial states. In selected energy regimes quantum Hall edge states can be deflected either fully or partially into grain boundary states. The degree of edge state deflection is studied in the nonlocal conductance and in the shot noise. We also consider the possibility of grain boundaries as gate-switchable spin filters, a functionality enabled by counterpropagating transport channels laterally confined in the grain boundary.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Jul 5, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial