Characterizing the local vectorial electric field near an atom chip using Rydberg-state spectroscopy

Characterizing the local vectorial electric field near an atom chip using Rydberg-state spectroscopy We use the sensitive response to electric fields of Rydberg atoms to characterize all three vector components of the local electric field close to an atom-chip surface. We measured Stark-Zeeman maps of S and D Rydberg states using an elongated cloud of ultracold rubidium atoms (temperature T∼2.5μK) trapped magnetically 100μm from the chip surface. The spectroscopy of S states yields a calibration for the generated local electric field at the position of the atoms. The values for different components of the field are extracted from the more complex response of D states to the combined electric and magnetic fields. From the analysis we find residual fields in the two uncompensated directions of 0.0±0.2 and 1.98±0.09 V/cm. This method also allows us to extract a value for the relevant field gradient along the long axis of the cloud. The manipulation of electric fields and the magnetic trapping are both done using on-chip wires, making this setup a promising candidate to observe Rydberg-mediated interactions on a chip. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review A American Physical Society (APS)

Characterizing the local vectorial electric field near an atom chip using Rydberg-state spectroscopy

Preview Only

Characterizing the local vectorial electric field near an atom chip using Rydberg-state spectroscopy

Abstract

We use the sensitive response to electric fields of Rydberg atoms to characterize all three vector components of the local electric field close to an atom-chip surface. We measured Stark-Zeeman maps of S and D Rydberg states using an elongated cloud of ultracold rubidium atoms (temperature T∼2.5μK) trapped magnetically 100μm from the chip surface. The spectroscopy of S states yields a calibration for the generated local electric field at the position of the atoms. The values for different components of the field are extracted from the more complex response of D states to the combined electric and magnetic fields. From the analysis we find residual fields in the two uncompensated directions of 0.0±0.2 and 1.98±0.09 V/cm. This method also allows us to extract a value for the relevant field gradient along the long axis of the cloud. The manipulation of electric fields and the magnetic trapping are both done using on-chip wires, making this setup a promising candidate to observe Rydberg-mediated interactions on a chip.
Loading next page...
 
/lp/aps_physical/characterizing-the-local-vectorial-electric-field-near-an-atom-chip-V6G2Q0uPZd
Publisher
American Physical Society (APS)
Copyright
Copyright © ©2017 American Physical Society
ISSN
1050-2947
eISSN
1094-1622
D.O.I.
10.1103/PhysRevA.96.013425
Publisher site
See Article on Publisher Site

Abstract

We use the sensitive response to electric fields of Rydberg atoms to characterize all three vector components of the local electric field close to an atom-chip surface. We measured Stark-Zeeman maps of S and D Rydberg states using an elongated cloud of ultracold rubidium atoms (temperature T∼2.5μK) trapped magnetically 100μm from the chip surface. The spectroscopy of S states yields a calibration for the generated local electric field at the position of the atoms. The values for different components of the field are extracted from the more complex response of D states to the combined electric and magnetic fields. From the analysis we find residual fields in the two uncompensated directions of 0.0±0.2 and 1.98±0.09 V/cm. This method also allows us to extract a value for the relevant field gradient along the long axis of the cloud. The manipulation of electric fields and the magnetic trapping are both done using on-chip wires, making this setup a promising candidate to observe Rydberg-mediated interactions on a chip.

Journal

Physical Review AAmerican Physical Society (APS)

Published: Jul 25, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off