Characterization of a measurement-based noiseless linear amplifier and its applications

Characterization of a measurement-based noiseless linear amplifier and its applications A noiseless linear amplifier (NLA) adds no noise to the signals it processes, which works only in a probabilistic way. It can be realized approximately with either a physical implementation that truncates the working space of the NLA on a photon-number basis or a measurement-based implementation that realizes the truncation virtually by a bounded postselection filter. To examine the relationship between these two approximate NLAs, we characterize in detail the measurement-based NLA and compare it with its physical counterpart in terms of their abilities to preserve the state Gaussianity and their probability of success. The link between these amplifiers is further clarified by integrating them into a measure-and-prepare setup. We stress the equivalence between the physical and the measurement-based approaches holds only when the effective parameters, the amplification gain, the cutoff, and the amplitude of the input state, are taken into account. Finally, we construct a 1-to-infinity cloner using the two amplifiers and show that a fidelity surpassing the no-cloning limit is achievable with the measurement-based NLA. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review A American Physical Society (APS)

Characterization of a measurement-based noiseless linear amplifier and its applications

Preview Only

Characterization of a measurement-based noiseless linear amplifier and its applications

Abstract

A noiseless linear amplifier (NLA) adds no noise to the signals it processes, which works only in a probabilistic way. It can be realized approximately with either a physical implementation that truncates the working space of the NLA on a photon-number basis or a measurement-based implementation that realizes the truncation virtually by a bounded postselection filter. To examine the relationship between these two approximate NLAs, we characterize in detail the measurement-based NLA and compare it with its physical counterpart in terms of their abilities to preserve the state Gaussianity and their probability of success. The link between these amplifiers is further clarified by integrating them into a measure-and-prepare setup. We stress the equivalence between the physical and the measurement-based approaches holds only when the effective parameters, the amplification gain, the cutoff, and the amplitude of the input state, are taken into account. Finally, we construct a 1-to-infinity cloner using the two amplifiers and show that a fidelity surpassing the no-cloning limit is achievable with the measurement-based NLA.
Loading next page...
 
/lp/aps_physical/characterization-of-a-measurement-based-noiseless-linear-amplifier-and-kC9ltzMqZH
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1050-2947
eISSN
1094-1622
D.O.I.
10.1103/PhysRevA.96.012319
Publisher site
See Article on Publisher Site

Abstract

A noiseless linear amplifier (NLA) adds no noise to the signals it processes, which works only in a probabilistic way. It can be realized approximately with either a physical implementation that truncates the working space of the NLA on a photon-number basis or a measurement-based implementation that realizes the truncation virtually by a bounded postselection filter. To examine the relationship between these two approximate NLAs, we characterize in detail the measurement-based NLA and compare it with its physical counterpart in terms of their abilities to preserve the state Gaussianity and their probability of success. The link between these amplifiers is further clarified by integrating them into a measure-and-prepare setup. We stress the equivalence between the physical and the measurement-based approaches holds only when the effective parameters, the amplification gain, the cutoff, and the amplitude of the input state, are taken into account. Finally, we construct a 1-to-infinity cloner using the two amplifiers and show that a fidelity surpassing the no-cloning limit is achievable with the measurement-based NLA.

Journal

Physical Review AAmerican Physical Society (APS)

Published: Jul 13, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off