Cascade replication of dissipative solitons

Cascade replication of dissipative solitons We report a new effect of a cascade replication of dissipative solitons from a single one. It is discussed in the framework of a common model based on the one-dimensional cubic-quintic complex Ginzburg-Landau equation in which an additional linear term is introduced to account the perturbation from a particular potential of externally applied force. The effect is demonstrated on the light beams propagating through a planar waveguide. The waveguide consists of a nonlinear layer able to guide dissipative solitons and a magneto-optic substrate. In the waveguide an externally applied force is considered to be an inhomogeneous magnetic field which is induced by modulated electric currents flowing along a set of conducting wires adjusted on the top of the waveguide. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review E American Physical Society (APS)

Cascade replication of dissipative solitons

Preview Only

Cascade replication of dissipative solitons

Abstract

We report a new effect of a cascade replication of dissipative solitons from a single one. It is discussed in the framework of a common model based on the one-dimensional cubic-quintic complex Ginzburg-Landau equation in which an additional linear term is introduced to account the perturbation from a particular potential of externally applied force. The effect is demonstrated on the light beams propagating through a planar waveguide. The waveguide consists of a nonlinear layer able to guide dissipative solitons and a magneto-optic substrate. In the waveguide an externally applied force is considered to be an inhomogeneous magnetic field which is induced by modulated electric currents flowing along a set of conducting wires adjusted on the top of the waveguide.
Loading next page...
 
/lp/aps_physical/cascade-replication-of-dissipative-solitons-YZiFURy7SJ
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1539-3755
eISSN
550-2376
D.O.I.
10.1103/PhysRevE.96.012206
Publisher site
See Article on Publisher Site

Abstract

We report a new effect of a cascade replication of dissipative solitons from a single one. It is discussed in the framework of a common model based on the one-dimensional cubic-quintic complex Ginzburg-Landau equation in which an additional linear term is introduced to account the perturbation from a particular potential of externally applied force. The effect is demonstrated on the light beams propagating through a planar waveguide. The waveguide consists of a nonlinear layer able to guide dissipative solitons and a magneto-optic substrate. In the waveguide an externally applied force is considered to be an inhomogeneous magnetic field which is induced by modulated electric currents flowing along a set of conducting wires adjusted on the top of the waveguide.

Journal

Physical Review EAmerican Physical Society (APS)

Published: Jul 7, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial