Can Topology and Geometry be Measured by an Operator Measurement in Quantum Gravity?

Can Topology and Geometry be Measured by an Operator Measurement in Quantum Gravity? In the context of Lin-Lunin-Maldacena geometries, we show that superpositions of classical coherent states of trivial topology can give rise to new classical limits where the topology of spacetime has changed. We argue that this phenomenon implies that neither the topology nor the geometry of spacetime can be the result of an operator measurement. We address how to reconcile these statements with the usual semiclassical analysis of low energy effective field theory for gravity. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review Letters American Physical Society (APS)

Can Topology and Geometry be Measured by an Operator Measurement in Quantum Gravity?

Preview Only

Can Topology and Geometry be Measured by an Operator Measurement in Quantum Gravity?

Abstract

In the context of Lin-Lunin-Maldacena geometries, we show that superpositions of classical coherent states of trivial topology can give rise to new classical limits where the topology of spacetime has changed. We argue that this phenomenon implies that neither the topology nor the geometry of spacetime can be the result of an operator measurement. We address how to reconcile these statements with the usual semiclassical analysis of low energy effective field theory for gravity.
Loading next page...
 
/lp/aps_physical/can-topology-and-geometry-be-measured-by-an-operator-measurement-in-E95RmiZeQ6
Publisher
American Physical Society (APS)
Copyright
Copyright © © 2017 American Physical Society
ISSN
0031-9007
eISSN
1079-7114
D.O.I.
10.1103/PhysRevLett.118.261601
Publisher site
See Article on Publisher Site

Abstract

In the context of Lin-Lunin-Maldacena geometries, we show that superpositions of classical coherent states of trivial topology can give rise to new classical limits where the topology of spacetime has changed. We argue that this phenomenon implies that neither the topology nor the geometry of spacetime can be the result of an operator measurement. We address how to reconcile these statements with the usual semiclassical analysis of low energy effective field theory for gravity.

Journal

Physical Review LettersAmerican Physical Society (APS)

Published: Jun 30, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off