Can Tetraneutron be a Narrow Resonance?

Can Tetraneutron be a Narrow Resonance? The search for a resonant four-neutron system has been revived thanks to the recent experimental hints reported in [1]. The existence of such a system would deeply impact our understanding of nuclear matter and requires a critical investigation. In this work, we study the existence of a four-neutron resonance in the quasistationary formalism using ab initio techniques with various two-body chiral interactions. We employ no-core Gamow shell model and density matrix renormalization group method, both supplemented by the use of natural orbitals and a new identification technique for broad resonances. We demonstrate that while the energy of the four-neutron system may be compatible with the experimental value, its width must be larger than the reported upper limit, supporting the interpretation of the experimental observation as a reaction process too short to form a nucleus. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review Letters American Physical Society (APS)

Can Tetraneutron be a Narrow Resonance?

Preview Only

Can Tetraneutron be a Narrow Resonance?

Abstract

The search for a resonant four-neutron system has been revived thanks to the recent experimental hints reported in [1]. The existence of such a system would deeply impact our understanding of nuclear matter and requires a critical investigation. In this work, we study the existence of a four-neutron resonance in the quasistationary formalism using ab initio techniques with various two-body chiral interactions. We employ no-core Gamow shell model and density matrix renormalization group method, both supplemented by the use of natural orbitals and a new identification technique for broad resonances. We demonstrate that while the energy of the four-neutron system may be compatible with the experimental value, its width must be larger than the reported upper limit, supporting the interpretation of the experimental observation as a reaction process too short to form a nucleus.
Loading next page...
 
/lp/aps_physical/can-tetraneutron-be-a-narrow-resonance-pEcQLmOEQo
Publisher
The American Physical Society
Copyright
Copyright © © 2017 American Physical Society
ISSN
0031-9007
eISSN
1079-7114
D.O.I.
10.1103/PhysRevLett.119.032501
Publisher site
See Article on Publisher Site

Abstract

The search for a resonant four-neutron system has been revived thanks to the recent experimental hints reported in [1]. The existence of such a system would deeply impact our understanding of nuclear matter and requires a critical investigation. In this work, we study the existence of a four-neutron resonance in the quasistationary formalism using ab initio techniques with various two-body chiral interactions. We employ no-core Gamow shell model and density matrix renormalization group method, both supplemented by the use of natural orbitals and a new identification technique for broad resonances. We demonstrate that while the energy of the four-neutron system may be compatible with the experimental value, its width must be larger than the reported upper limit, supporting the interpretation of the experimental observation as a reaction process too short to form a nucleus.

Journal

Physical Review LettersAmerican Physical Society (APS)

Published: Jul 21, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial