Calculation of the rate of nuclear excitation by electron transition in an Rb84m plasma under the hypothesis of local thermodynamic equilibrium using a multiconfiguration Dirac-Fock approach

Calculation of the rate of nuclear excitation by electron transition in an Rb84m plasma under the... One promising candidate for the first detection of nuclear excitation in plasma is the 463-keV, 20.26-min-lifetime isomeric state in Rb84, which can be excited via a 3.5-keV transition to a higher lying state. According to our preliminary calculations, under specific plasma conditions, nuclear excitation by electron transition (NEET) may be its strongest excitation process. Evaluating a reliable NEET rate requires, in particular, a thorough examination of all atomic transitions contributing to the rate under plasma conditions. We report the results of a detailed evaluation of the NEET rate based on multiconfiguration Dirac Fock (MCDF) atomic calculations, in a rubidium plasma at local thermodynamic equilibrium with a temperature of 400 eV and a density of 10−2g/cm3 and based on a more precise energy measurement of the nuclear transition involved in the excitation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review C American Physical Society (APS)

Calculation of the rate of nuclear excitation by electron transition in an Rb84m plasma under the hypothesis of local thermodynamic equilibrium using a multiconfiguration Dirac-Fock approach

Preview Only

Calculation of the rate of nuclear excitation by electron transition in an Rb84m plasma under the hypothesis of local thermodynamic equilibrium using a multiconfiguration Dirac-Fock approach

Abstract

One promising candidate for the first detection of nuclear excitation in plasma is the 463-keV, 20.26-min-lifetime isomeric state in Rb84, which can be excited via a 3.5-keV transition to a higher lying state. According to our preliminary calculations, under specific plasma conditions, nuclear excitation by electron transition (NEET) may be its strongest excitation process. Evaluating a reliable NEET rate requires, in particular, a thorough examination of all atomic transitions contributing to the rate under plasma conditions. We report the results of a detailed evaluation of the NEET rate based on multiconfiguration Dirac Fock (MCDF) atomic calculations, in a rubidium plasma at local thermodynamic equilibrium with a temperature of 400 eV and a density of 10−2g/cm3 and based on a more precise energy measurement of the nuclear transition involved in the excitation.
Loading next page...
 
/lp/aps_physical/calculation-of-the-rate-of-nuclear-excitation-by-electron-transition-EiPjobZF2J
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
0556-2813
eISSN
1089-490X
D.O.I.
10.1103/PhysRevC.96.024604
Publisher site
See Article on Publisher Site

Abstract

One promising candidate for the first detection of nuclear excitation in plasma is the 463-keV, 20.26-min-lifetime isomeric state in Rb84, which can be excited via a 3.5-keV transition to a higher lying state. According to our preliminary calculations, under specific plasma conditions, nuclear excitation by electron transition (NEET) may be its strongest excitation process. Evaluating a reliable NEET rate requires, in particular, a thorough examination of all atomic transitions contributing to the rate under plasma conditions. We report the results of a detailed evaluation of the NEET rate based on multiconfiguration Dirac Fock (MCDF) atomic calculations, in a rubidium plasma at local thermodynamic equilibrium with a temperature of 400 eV and a density of 10−2g/cm3 and based on a more precise energy measurement of the nuclear transition involved in the excitation.

Journal

Physical Review CAmerican Physical Society (APS)

Published: Aug 2, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial