Bulk viscosity of two-flavor quark matter from the Kubo formalism

Bulk viscosity of two-flavor quark matter from the Kubo formalism We study the bulk viscosity of quark matter in the strong coupling regime within the two-flavor Nambu–Jona-Lasinio model. The dispersive effects that lead to nonzero bulk viscosity arise from quark-meson fluctuations above the Mott transition temperature, where meson decay into two quarks is kinematically allowed. We adopt the Kubo-Zubarev formalism and compute the equilibrium imaginary-time correlation function for pressure in the O(1/Nc) power counting scheme. The bulk viscosity of matter is expressed in terms of the Lorentz components of the quark spectral function and includes multiloop contributions which arise via resummation of infinite geometrical series of loop diagrams. We show that the multiloop contributions dominate the single-loop contribution close to the Mott line, whereas at high temperatures the one-loop contribution is dominant. The multiloop bulk viscosity dominates the shear viscosity close to the Mott temperature by factors 5 to 20, but, with increasing temperature, the shear viscosity becomes the dominant dissipation mechanism of stresses as the one-loop contribution becomes the main source of bulk viscosity. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review D American Physical Society (APS)

Bulk viscosity of two-flavor quark matter from the Kubo formalism

Preview Only

Bulk viscosity of two-flavor quark matter from the Kubo formalism

Abstract

We study the bulk viscosity of quark matter in the strong coupling regime within the two-flavor Nambu–Jona-Lasinio model. The dispersive effects that lead to nonzero bulk viscosity arise from quark-meson fluctuations above the Mott transition temperature, where meson decay into two quarks is kinematically allowed. We adopt the Kubo-Zubarev formalism and compute the equilibrium imaginary-time correlation function for pressure in the O(1/Nc) power counting scheme. The bulk viscosity of matter is expressed in terms of the Lorentz components of the quark spectral function and includes multiloop contributions which arise via resummation of infinite geometrical series of loop diagrams. We show that the multiloop contributions dominate the single-loop contribution close to the Mott line, whereas at high temperatures the one-loop contribution is dominant. The multiloop bulk viscosity dominates the shear viscosity close to the Mott temperature by factors 5 to 20, but, with increasing temperature, the shear viscosity becomes the dominant dissipation mechanism of stresses as the one-loop contribution becomes the main source of bulk viscosity.
Loading next page...
 
/lp/aps_physical/bulk-viscosity-of-two-flavor-quark-matter-from-the-kubo-formalism-k4I0DOGKLt
Publisher
The American Physical Society
Copyright
Copyright © © 2017 American Physical Society
ISSN
1550-7998
eISSN
1550-2368
D.O.I.
10.1103/PhysRevD.96.034006
Publisher site
See Article on Publisher Site

Abstract

We study the bulk viscosity of quark matter in the strong coupling regime within the two-flavor Nambu–Jona-Lasinio model. The dispersive effects that lead to nonzero bulk viscosity arise from quark-meson fluctuations above the Mott transition temperature, where meson decay into two quarks is kinematically allowed. We adopt the Kubo-Zubarev formalism and compute the equilibrium imaginary-time correlation function for pressure in the O(1/Nc) power counting scheme. The bulk viscosity of matter is expressed in terms of the Lorentz components of the quark spectral function and includes multiloop contributions which arise via resummation of infinite geometrical series of loop diagrams. We show that the multiloop contributions dominate the single-loop contribution close to the Mott line, whereas at high temperatures the one-loop contribution is dominant. The multiloop bulk viscosity dominates the shear viscosity close to the Mott temperature by factors 5 to 20, but, with increasing temperature, the shear viscosity becomes the dominant dissipation mechanism of stresses as the one-loop contribution becomes the main source of bulk viscosity.

Journal

Physical Review DAmerican Physical Society (APS)

Published: Aug 1, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off