Breaking the Temporal Resolution Limit by Superoscillating Optical Beats

Breaking the Temporal Resolution Limit by Superoscillating Optical Beats Band-limited functions can oscillate locally at an arbitrarily fast rate through an interference phenomenon known as superoscillations. Using an optical pulse with a superoscillatory envelope we experimentally break the temporal Fourier-transform focusing limit with a temporal feature that is approximately three times shorter than the duration of a transform-limited Gaussian pulse having a comparable bandwidth while maintaining 30% visibility. We experimentally demonstrate the ability of such signals to achieve temporal superresolution and show numerically in which cases such pulses can outperform transform-limited pulses. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review Letters American Physical Society (APS)

Breaking the Temporal Resolution Limit by Superoscillating Optical Beats

Preview Only

Breaking the Temporal Resolution Limit by Superoscillating Optical Beats

Abstract

Band-limited functions can oscillate locally at an arbitrarily fast rate through an interference phenomenon known as superoscillations. Using an optical pulse with a superoscillatory envelope we experimentally break the temporal Fourier-transform focusing limit with a temporal feature that is approximately three times shorter than the duration of a transform-limited Gaussian pulse having a comparable bandwidth while maintaining 30% visibility. We experimentally demonstrate the ability of such signals to achieve temporal superresolution and show numerically in which cases such pulses can outperform transform-limited pulses.
Loading next page...
 
/lp/aps_physical/breaking-the-temporal-resolution-limit-by-superoscillating-optical-tJQfiyCSo3
Publisher
The American Physical Society
Copyright
Copyright © © 2017 American Physical Society
ISSN
0031-9007
eISSN
1079-7114
D.O.I.
10.1103/PhysRevLett.119.043903
Publisher site
See Article on Publisher Site

Abstract

Band-limited functions can oscillate locally at an arbitrarily fast rate through an interference phenomenon known as superoscillations. Using an optical pulse with a superoscillatory envelope we experimentally break the temporal Fourier-transform focusing limit with a temporal feature that is approximately three times shorter than the duration of a transform-limited Gaussian pulse having a comparable bandwidth while maintaining 30% visibility. We experimentally demonstrate the ability of such signals to achieve temporal superresolution and show numerically in which cases such pulses can outperform transform-limited pulses.

Journal

Physical Review LettersAmerican Physical Society (APS)

Published: Jul 28, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial