Boundary in the dynamic phase of globally coupled oscillatory and excitable units

Boundary in the dynamic phase of globally coupled oscillatory and excitable units There is a crucial boundary between dynamic phase 1 and dynamic phase 2 of globally coupled oscillatory and excitable units, where the mean field is constant and oscillates in the former and the latter, respectively. This boundary is theoretically derived here for a large population of dynamical units, each having only a phase variable, where it is assumed that both the coupling strength and the distribution width of bifurcation parameters are equally small. This theory, which is applicable only if all or most of the units are intrinsically oscillatory, is confirmed to agree with simulation results for two different distribution densities. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review E American Physical Society (APS)

Boundary in the dynamic phase of globally coupled oscillatory and excitable units

Preview Only

Boundary in the dynamic phase of globally coupled oscillatory and excitable units

Abstract

There is a crucial boundary between dynamic phase 1 and dynamic phase 2 of globally coupled oscillatory and excitable units, where the mean field is constant and oscillates in the former and the latter, respectively. This boundary is theoretically derived here for a large population of dynamical units, each having only a phase variable, where it is assumed that both the coupling strength and the distribution width of bifurcation parameters are equally small. This theory, which is applicable only if all or most of the units are intrinsically oscillatory, is confirmed to agree with simulation results for two different distribution densities.
Loading next page...
 
/lp/aps_physical/boundary-in-the-dynamic-phase-of-globally-coupled-oscillatory-and-jr0Rq3Z346
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1539-3755
eISSN
550-2376
D.O.I.
10.1103/PhysRevE.96.012210
Publisher site
See Article on Publisher Site

Abstract

There is a crucial boundary between dynamic phase 1 and dynamic phase 2 of globally coupled oscillatory and excitable units, where the mean field is constant and oscillates in the former and the latter, respectively. This boundary is theoretically derived here for a large population of dynamical units, each having only a phase variable, where it is assumed that both the coupling strength and the distribution width of bifurcation parameters are equally small. This theory, which is applicable only if all or most of the units are intrinsically oscillatory, is confirmed to agree with simulation results for two different distribution densities.

Journal

Physical Review EAmerican Physical Society (APS)

Published: Jul 13, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off